App öffnen

Fächer

Arithmetische und Geometrische Folgen einfach erklärt mit Beispielen

33

0

J

Julia

14.10.2025

Mathe

Folgen und Grenzwerte

1.241

14. Okt. 2025

3 Seiten

Arithmetische und Geometrische Folgen einfach erklärt mit Beispielen

J

Julia

@juliaa.svd

Folgen und Reihensind grundlegende Konzepte der Mathematik. Sie beschreiben... Mehr anzeigen

Page 1
Page 2
Page 3
1 / 3
матне
Folgen
statt f(x)= x², schreiben wir a(n) = n². (für n nur natürliche Zahlen), d. h. a (^)=1, a (2) = 4, a(3=9)
→ a(n) = 1; 4; 9; 16;

Monotonie und Beschränktheit von Folgen

Monotonie ist eine wichtige Eigenschaft von Folgen, die ihr Verhalten beschreibt.

Definition: Eine Folge heißt strengstreng monoton steigend, wenn für alle n gilt: an+1n+1 > ann. Sie heißt strengstreng monoton fallend, wenn für alle n gilt: an+1n+1 < ann.

Um die Monotonie einer Folge zu beweisen, vergleicht man oft benachbarte Folgeglieder.

Beispiel: Für die Folge ann = n²/12 - 1 kann man zeigen, dass an+1n+1 > ann ist, indem man die Differenz berechnet.

Beschränktheit ist eine weitere wichtige Eigenschaft von Folgen.

Definition: Eine Folge heißt nach unten beschränkt, wenn es eine Zahl gibt, die kleiner oder gleich allen Folgegliedern ist. Sie heißt nach oben beschränkt, wenn es eine Zahl gibt, die größer oder gleich allen Folgegliedern ist.

Beispiel: Die Folge ann = 1-1^n ist sowohl nach oben als auch nach unten beschränkt, da alle Folgeglieder zwischen -1 und 1 liegen.

Um die Beschränktheit einer Folge zu zeigen, kann man oft obere und untere Schranken angeben und beweisen, dass alle Folgeglieder innerhalb dieser Grenzen liegen.

Highlight: Die Analyse von Monotonie und Beschränktheit ist oft der erste Schritt bei der Untersuchung des Verhaltens einer Folge und kann wichtige Hinweise auf mögliche Grenzwerte geben.

матне
Folgen
statt f(x)= x², schreiben wir a(n) = n². (für n nur natürliche Zahlen), d. h. a (^)=1, a (2) = 4, a(3=9)
→ a(n) = 1; 4; 9; 16;

Grenzwerte von Folgen

Grenzwerte sind ein zentrales Konzept in der Analysis und beschreiben das Verhalten einer Folge für sehr große Indizes.

Definition: Eine Zahl g heißt Grenzwert einer Folge ann, wenn der Abstand zwischen ann und g ab einer bestimmten Platznummer n₀ für alle größeren n immer kleiner als jeder noch so kleine Abstand ε wird.

In Kurzform schreibt man: |ann - g| ≤ ε für alle n ≥ n₀

Vocabulary: Eine ε-Umgebung ist ein offenes Intervall um den Grenzwert g.

Eine Folge, die einen Grenzwert besitzt, heißt konvergent. Andernfalls ist sie divergent.

Beispiel: Die Folge ann = 4n14n-1/n+1n+1 konvergiert gegen 4. Man schreibt: limnn→∞ 4n14n-1/n+1n+1 = 4

Es gibt wichtige Grenzwertsätze, die die Berechnung von Grenzwerten erleichtern:

  1. Für die Summe konvergenter Folgen gilt: lima[n]±b[n]a[n] ± b[n] = lim ann ± lim bnn
  2. Für das Produkt konvergenter Folgen gilt: lima[n]b[n]a[n] · b[n] = lim ann · lim bnn

Highlight: Bei der Berechnung von Grenzwerten von Brüchen ist es oft hilfreich, den höchsten Exponenten im Zähler und Nenner zu vergleichen:

  • Ist der höchste Exponent im Nenner größer, ist der Grenzwert 0.
  • Ist der höchste Exponent im Zähler größer, divergiert die Folge.
  • Sind die höchsten Exponenten gleich, ergibt sich ein von Null verschiedener Grenzwert.

Die Untersuchung von Grenzwerten ist fundamental für das Verständnis des Verhaltens von Folgen und Funktionen und bildet die Grundlage für viele fortgeschrittene Konzepte in der Analysis.

матне
Folgen
statt f(x)= x², schreiben wir a(n) = n². (für n nur natürliche Zahlen), d. h. a (^)=1, a (2) = 4, a(3=9)
→ a(n) = 1; 4; 9; 16;

Grundlagen der Folgen

In der Mathematik sind Folgen Funktionen mit natürlichen Zahlen als Definitionsbereich. Sie werden oft als Alternative zu herkömmlichen Funktionen verwendet, wie zum Beispiel ann = n² statt fxx = x².

Definition: Eine Zahlenfolge ist eine Funktion mit dem Definitionsbereich der natürlichen Zahlen.

Arithmetische Folgen sind ein wichtiger Typ von Folgen. Sie zeichnen sich durch eine konstante Differenz zwischen benachbarten Folgegliedern aus.

Beispiel: Die Folge ann = 2n + 1 ergibt 3, 5, 7, 9, ...

Für arithmetische Folgen gilt der Satz: a[n+1]+a[n1]a[n+1] + a[n-1] / 2 = ann

Das Bildungsgesetz für arithmetische Folgen lautet: ann = a₁ + n1n-1 · d, wobei d die konstante Differenz ist.

Geometrische Folgen sind ein weiterer wichtiger Folgentyp. Hier erhält man das nächste Folgeglied durch Multiplikation mit einem konstanten Faktor.

Beispiel: Die Folge 2, 4, 8, 16, 32 ist eine geometrische Folge mit dem Faktor 2.

Das Bildungsgesetz für geometrische Folgen lautet: ann = a₁ · q^n1n-1, wobei q der konstante Faktor ist.

Highlight: Die Summenformeln für arithmetische und geometrische Folgen sind wichtige Werkzeuge in der Mathematik und finden in vielen Bereichen Anwendung.



Wir dachten, du würdest nie fragen...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist speziell auf die Bedürfnisse von Schülern zugeschnitten. Basierend auf den Millionen von Inhalten, die wir auf der Plattform haben, können wir den Schülern wirklich sinnvolle und relevante Antworten geben. Aber es geht nicht nur um Antworten, sondern der Begleiter führt die Schüler auch durch ihre täglichen Lernherausforderungen, mit personalisierten Lernplänen, Quizfragen oder Inhalten im Chat und einer 100% Personalisierung basierend auf den Fähigkeiten und Entwicklungen der Schüler.

Wo kann ich mir die Knowunity-App herunterladen?

Du kannst dir die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Ja, du hast kostenlosen Zugriff auf Inhalte in der App und auf unseren KI-Begleiter. Zum Freischalten bestimmter Features in der App kannst du Knowunity Pro erwerben.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Schüler:innen lieben uns — und du wirst es auch.

4.9/5

App Store

4.8/5

Google Play

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Mathe

14. Okt. 2025

1.241

3 Seiten

Arithmetische und Geometrische Folgen einfach erklärt mit Beispielen

J

Julia @juliaa.svd

Folgen und Reihen sind grundlegende Konzepte der Mathematik. Sie beschreiben Zahlenfolgen und deren Eigenschaften wie Monotonie, Beschränktheit und Grenzwerte. Wichtige Typen sind arithmetische und geometrische Folgen. Die Analyse von... Mehr anzeigen

матне
Folgen
statt f(x)= x², schreiben wir a(n) = n². (für n nur natürliche Zahlen), d. h. a (^)=1, a (2) = 4, a(3=9)
→ a(n) = 1; 4; 9; 16;

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Monotonie und Beschränktheit von Folgen

Monotonie ist eine wichtige Eigenschaft von Folgen, die ihr Verhalten beschreibt.

Definition Eine Folge heißt strengstreng monoton steigend, wenn für alle n gilt an+1n+1 > ann. Sie heißt strengstreng monoton fallend, wenn für alle n gilt an+1n+1 < ann.

Um die Monotonie einer Folge zu beweisen, vergleicht man oft benachbarte Folgeglieder.

Beispiel Für die Folge ann = n²/12 - 1 kann man zeigen, dass an+1n+1 > ann ist, indem man die Differenz berechnet.

Beschränktheit ist eine weitere wichtige Eigenschaft von Folgen.

Definition Eine Folge heißt nach unten beschränkt, wenn es eine Zahl gibt, die kleiner oder gleich allen Folgegliedern ist. Sie heißt nach oben beschränkt, wenn es eine Zahl gibt, die größer oder gleich allen Folgegliedern ist.

Beispiel Die Folge ann = 1-1^n ist sowohl nach oben als auch nach unten beschränkt, da alle Folgeglieder zwischen -1 und 1 liegen.

Um die Beschränktheit einer Folge zu zeigen, kann man oft obere und untere Schranken angeben und beweisen, dass alle Folgeglieder innerhalb dieser Grenzen liegen.

Highlight Die Analyse von Monotonie und Beschränktheit ist oft der erste Schritt bei der Untersuchung des Verhaltens einer Folge und kann wichtige Hinweise auf mögliche Grenzwerte geben.

матне
Folgen
statt f(x)= x², schreiben wir a(n) = n². (für n nur natürliche Zahlen), d. h. a (^)=1, a (2) = 4, a(3=9)
→ a(n) = 1; 4; 9; 16;

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Grenzwerte von Folgen

Grenzwerte sind ein zentrales Konzept in der Analysis und beschreiben das Verhalten einer Folge für sehr große Indizes.

Definition Eine Zahl g heißt Grenzwert einer Folge ann, wenn der Abstand zwischen ann und g ab einer bestimmten Platznummer n₀ für alle größeren n immer kleiner als jeder noch so kleine Abstand ε wird.

In Kurzform schreibt man |ann - g| ≤ ε für alle n ≥ n₀

Vocabulary Eine ε-Umgebung ist ein offenes Intervall um den Grenzwert g.

Eine Folge, die einen Grenzwert besitzt, heißt konvergent. Andernfalls ist sie divergent.

Beispiel Die Folge ann = 4n14n-1/n+1n+1 konvergiert gegen 4. Man schreibt limnn→∞ 4n14n-1/n+1n+1 = 4

Es gibt wichtige Grenzwertsätze, die die Berechnung von Grenzwerten erleichtern

  1. Für die Summe konvergenter Folgen gilt lima[n]±b[n]a[n] ± b[n] = lim ann ± lim bnn
  2. Für das Produkt konvergenter Folgen gilt lima[n]b[n]a[n] · b[n] = lim ann · lim bnn

Highlight Bei der Berechnung von Grenzwerten von Brüchen ist es oft hilfreich, den höchsten Exponenten im Zähler und Nenner zu vergleichen

  • Ist der höchste Exponent im Nenner größer, ist der Grenzwert 0.
  • Ist der höchste Exponent im Zähler größer, divergiert die Folge.
  • Sind die höchsten Exponenten gleich, ergibt sich ein von Null verschiedener Grenzwert.

Die Untersuchung von Grenzwerten ist fundamental für das Verständnis des Verhaltens von Folgen und Funktionen und bildet die Grundlage für viele fortgeschrittene Konzepte in der Analysis.

матне
Folgen
statt f(x)= x², schreiben wir a(n) = n². (für n nur natürliche Zahlen), d. h. a (^)=1, a (2) = 4, a(3=9)
→ a(n) = 1; 4; 9; 16;

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Grundlagen der Folgen

In der Mathematik sind Folgen Funktionen mit natürlichen Zahlen als Definitionsbereich. Sie werden oft als Alternative zu herkömmlichen Funktionen verwendet, wie zum Beispiel ann = n² statt fxx = x².

Definition Eine Zahlenfolge ist eine Funktion mit dem Definitionsbereich der natürlichen Zahlen.

Arithmetische Folgen sind ein wichtiger Typ von Folgen. Sie zeichnen sich durch eine konstante Differenz zwischen benachbarten Folgegliedern aus.

Beispiel Die Folge ann = 2n + 1 ergibt 3, 5, 7, 9, ...

Für arithmetische Folgen gilt der Satz a[n+1]+a[n1]a[n+1] + a[n-1] / 2 = ann

Das Bildungsgesetz für arithmetische Folgen lautet ann = a₁ + n1n-1 · d, wobei d die konstante Differenz ist.

Geometrische Folgen sind ein weiterer wichtiger Folgentyp. Hier erhält man das nächste Folgeglied durch Multiplikation mit einem konstanten Faktor.

Beispiel Die Folge 2, 4, 8, 16, 32 ist eine geometrische Folge mit dem Faktor 2.

Das Bildungsgesetz für geometrische Folgen lautet ann = a₁ · q^n1n-1, wobei q der konstante Faktor ist.

Highlight Die Summenformeln für arithmetische und geometrische Folgen sind wichtige Werkzeuge in der Mathematik und finden in vielen Bereichen Anwendung.

Wir dachten, du würdest nie fragen...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist speziell auf die Bedürfnisse von Schülern zugeschnitten. Basierend auf den Millionen von Inhalten, die wir auf der Plattform haben, können wir den Schülern wirklich sinnvolle und relevante Antworten geben. Aber es geht nicht nur um Antworten, sondern der Begleiter führt die Schüler auch durch ihre täglichen Lernherausforderungen, mit personalisierten Lernplänen, Quizfragen oder Inhalten im Chat und einer 100% Personalisierung basierend auf den Fähigkeiten und Entwicklungen der Schüler.

Wo kann ich mir die Knowunity-App herunterladen?

Du kannst dir die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Ja, du hast kostenlosen Zugriff auf Inhalte in der App und auf unseren KI-Begleiter. Zum Freischalten bestimmter Features in der App kannst du Knowunity Pro erwerben.

33

Smarte Tools NEU

Verwandle diese Notizen in: ✓ 50+ Übungsaufgaben ✓ Interaktive Karteikarten ✓ Vollständige Probeklausur ✓ Aufsatz-Gliederungen

Probeklausur
Quiz
Flashcards
Aufsatz

Ähnliche Inhalte

Funktionen und Ableitungen

Diese Zusammenfassung behandelt die wichtigsten Konzepte zu Funktionen, Ableitungen und deren Transformationen. Sie umfasst die Berechnung von Nullstellen, Extrempunkten, Wendepunkten sowie die Anwendung der Ableitungsregeln. Ideal für die Vorbereitung auf zentrale Klausuren in Mathematik.

MatheMathe
11

Differentialquotienten & Asymptoten

Diese Zusammenfassung behandelt die Konzepte des Differentialquotienten, der lokalen und globalen Änderungsraten sowie gebrochen rationaler Funktionen. Erfahren Sie, wie man Ableitungen bestimmt, das Verhalten im Unendlichen analysiert und Asymptoten identifiziert. Ideal für Studierende der Mathematik, die sich auf Prüfungen vorbereiten oder ihr Verständnis vertiefen möchten.

MatheMathe
11

Ableitungsregeln Zusammenfassung

Entdecken Sie die wichtigsten Ableitungsregeln der Differentialrechnung: Konstantenregel, Potenzregel, Faktorregel, Summenregel, Produktregel, Quotientenregel und Kettenregel. Jedes Konzept wird mit klaren Beispielen erläutert, einschließlich der Ableitung von E-Funktionen sowie Sinus- und Cosinus-Funktionen. Ideal für Studierende der Mathematik.

MatheMathe
11

Mathe Abitur: Schlüsselthemen

Diese Zusammenfassung deckt alle wichtigen Themen für das Mathe-Abitur ab, einschließlich Analysis, Geometrie und Stochastik. Ideal für Leistungskurse und Grundkurse. Enthält wichtige Konzepte wie Ableitungen, Integrale, Wahrscheinlichkeitsverteilungen und mehr. Perfekt zur Vorbereitung auf Prüfungen.

MatheMathe
11

Differenzieren: Grundlagen und Regeln

Erfahren Sie alles über das Differenzieren in der Mathematik. Dieser Überblick behandelt den Differenzenquotienten, die Ableitungsfunktion, lokale und globale Änderungsraten sowie die wichtigsten Ableitungsregeln. Ideal für Studierende der Differential- und Integralrechnung.

MatheMathe
11

Integralrechnung und Ableitungen

Diese handschriftliche Zusammenfassung bietet eine umfassende Übersicht über Integralrechnung, Ableitungen und deren Anwendungen. Enthalten sind Beispiele, Graphiken und wichtige Techniken wie partielle Integration, Nullstellenbestimmung und die Berechnung von Flächen zwischen Graphen. Ideal für Schüler, die sich auf das Abitur vorbereiten. PDF-Qualität kann aufgrund von Komprimierung variieren.

MatheMathe
11

Nichts passendes dabei? Erkunde andere Fachbereiche.

Schüler:innen lieben uns — und du wirst es auch.

4.9/5

App Store

4.8/5

Google Play

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user