Hier ist die optimierte Zusammenfassung in Deutsch:
Die Kurvendiskussionist... Mehr anzeigen
Europa und globalisierung
Deutschland zwischen demokratie und diktatur
Demokratie und freiheit
Bipolare welt und deutschland nach 1953
Imperialismus und erster weltkrieg
Das 20. jahrhundert
Frühe neuzeit
Herausbildung moderner strukturen in gesellschaft und staat
Das geteilte deutschland und die wiedervereinigung
Europa und die welt
Friedensschlüsse und ordnungen des friedens in der moderne
Der mensch und seine geschichte
Die moderne industriegesellschaft zwischen fortschritt und krise
Akteure internationaler politik in politischer perspektive
Großreiche
Alle Themen
83
•
31. März 2021
•
Nele
@nmehrkens_03
Hier ist die optimierte Zusammenfassung in Deutsch:
Die Kurvendiskussionist... Mehr anzeigen
Die zweite Seite der Kurvendiskussion Checkliste konzentriert sich auf die Analyse von Extrempunkten und Wendepunkten, die für das Verständnis des Funktionsverhaltens entscheidend sind.
Für Extrempunkte wird die allgemeine Form einer Funktion f = ax^n + bx^ + cx + d betrachtet. Die erste und zweite Ableitung werden genutzt, um potenzielle Extremstellen zu identifizieren und zu klassifizieren:
Vocabulary: Ein Extrempunkt ist ein Punkt auf dem Graphen einer Funktion, an dem die Funktion ein lokales Maximum oder Minimum erreicht.
Für Wendepunkte gelten die Bedingungen f'' = 0 und f''' ≠ 0. Es wird zwischen gewöhnlichen Wendepunkten und Sattelpunkten unterschieden:
Example: Ein Wendepunkt W wird bestimmt, indem man x₀ in f einsetzt, um y₀ zu erhalten.
Das Verhalten im Unendlichen wird durch Grenzwertbetrachtungen untersucht:
lim f für x → ∞ und x → -∞
Diese Analyse hilft, das asymptotische Verhalten der Funktion zu verstehen.
Abschließend wird die Bedeutung des Zeichnens des Graphen betont, wobei alle ermittelten Punkte eingetragen und verbunden werden.
Highlight: Die sorgfältige Analyse von Extrempunkten, Wendepunkten und dem Verhalten im Unendlichen ist entscheidend für ein vollständiges Verständnis des Funktionsverlaufs in der Kurvendiskussion.
Diese detaillierte Untersuchung ermöglicht es, ein umfassendes Bild der Funktion zu erstellen und ihre charakteristischen Eigenschaften zu verstehen.
Die dritte Seite widmet sich den Steckbriefaufgaben, einer wichtigen Kategorie von Aufgaben in der Mathematik, bei denen Funktionsgleichungen anhand spezifischer Eigenschaften des Funktionsgraphen bestimmt werden müssen.
Definition: Steckbriefaufgaben sind mathematische Probleme, bei denen eine Funktionsgleichung anhand gegebener Eigenschaften des Funktionsgraphen ermittelt werden soll.
Die Seite präsentiert eine umfassende Tabelle, die verschiedene Eigenschaften des Funktionsgraphen mit den entsprechenden notwendigen Bedingungen für die Funktionsgleichung verknüpft. Hier einige wichtige Beispiele:
Example: Wenn gegeben ist, dass der Graph bei x = 2 eine Extremstelle hat und durch den Punkt P geht, würden die Bedingungen f = 4 und f' = 0 in die Funktionsgleichung einfließen.
Die Tabelle behandelt auch spezielle Fälle wie Symmetrieeigenschaften:
Highlight: Die Kenntnis dieser Bedingungen ist entscheidend für die Lösung von Steckbriefaufgaben und ermöglicht es, komplexe Funktionsgleichungen aus gegebenen Eigenschaften des Graphen zu konstruieren.
Diese systematische Auflistung von Eigenschaften und Bedingungen bildet ein wertvolles Merkblatt für Steckbriefaufgaben, das Schülern hilft, strukturiert an solche Aufgaben heranzugehen und die richtigen mathematischen Werkzeuge anzuwenden.
Die vierte Seite führt in den Gauß-Algorithmus ein, eine leistungsfähige Methode zur Lösung linearer Gleichungssysteme. Diese Seite bietet eine detaillierte Gauß-Algorithmus Anleitung mit einem konkreten Beispiel.
Definition: Der Gauß-Algorithmus ist ein systematisches Verfahren zur Lösung linearer Gleichungssysteme durch schrittweise Elimination von Variablen.
Das präsentierte Beispiel zeigt ein System von drei Gleichungen mit drei Unbekannten:
I. x₁ + x₂ + 2x₃ = 0 II. -2x₁ + x₂ - 6x₃ = 0 III. x₁ - 2x₃ = 3
Die Seite erläutert die zulässigen Operationen im Gauß-Verfahren:
Highlight: Die Kernidee des Gauß-Algorithmus besteht darin, das Gleichungssystem in Stufenform zu bringen, wobei systematisch Variablen eliminiert werden.
Die Gauß-Algorithmus Schritte werden detailliert aufgeführt:
Example: Im gegebenen Beispiel wird x₃ zuerst berechnet , dann x₂ und schließlich x₁.
Die Seite demonstriert auch, wie man die Lösung überprüft, indem man die berechneten Werte in die ursprünglichen Gleichungen einsetzt.
Diese detaillierte Darstellung des Gauß-Algorithmus bietet Schülern eine solide Grundlage für das Verständnis und die Anwendung dieser wichtigen mathematischen Methode zur Lösung linearer Gleichungssysteme.
Die fünfte Seite befasst sich mit den verschiedenen Lösungsszenarien für lineare Gleichungssysteme und ergänzt damit die vorherige Erklärung des Gauß-Algorithmus. Sie präsentiert drei mögliche Fälle:
Definition: Ein lineares Gleichungssystem ist eine Sammlung von linearen Gleichungen mit mehreren Unbekannten, die simultan gelöst werden sollen.
Für den Fall einer eindeutigen Lösung wird ein Beispiel in Matrixform gezeigt:
1 0 0 0 | w
0 1 0 0 | x
0 0 1 0 | y
0 0 0 1 | z
Hier entspricht jede Variable direkt einem Wert: a = w, b = x, c = y, d = z.
Example: In diesem Fall wäre die Lösung L = {}, wobei w, x, y und z die spezifischen Werte für die Variablen a, b, c und d repräsentieren.
Für den Fall ohne Lösung wird eine Matrix präsentiert, die zu einem Widerspruch führt, symbolisiert durch eine Zeile wie:
0 0 0 0 | 1
Dies bedeutet, dass 0 = 1 sein müsste, was unmöglich ist. In diesem Fall ist die Lösungsmenge leer: L = { }.
Highlight: Ein lineares Gleichungssystem ohne Lösung tritt auf, wenn die Gleichungen widersprüchlich sind und keine Wertekombination alle Gleichungen gleichzeitig erfüllen kann.
Für den Fall unendlich vieler Lösungen wird eine Matrix gezeigt, bei der mindestens eine Variable frei wählbar ist, während die anderen davon abhängen. Dies wird durch eine Zeile wie folgt dargestellt:
0 1 1 0 | 3
Hier könnte x₂ = x₂ gesetzt werden, während sich x₃ daraus ergibt.
Vocabulary: Eine freie Variable in einem linearen Gleichungssystem ist eine Variable, deren Wert frei gewählt werden kann, wobei sich die Werte der anderen Variablen daraus ergeben.
Diese Übersicht über die verschiedenen Lösungsszenarien vervollständigt das Verständnis linearer Gleichungssysteme und des Gauß-Algorithmus. Sie zeigt, dass die Analyse eines Gleichungssystems nicht nur zur Bestimmung spezifischer Werte dient, sondern auch wichtige Informationen über die Natur des Systems selbst liefert.
Die erste Seite der Kurvendiskussion Anleitung führt in die wesentlichen Schritte der Funktionsanalyse ein. Sie beginnt mit der Bestimmung des Definitionsbereichs, gefolgt von der Ermittlung der Schnittpunkte mit den Achsen, insbesondere der Nullstellen.
Der Definitionsbereich wird sorgfältig untersucht, wobei besonders auf Wurzeln und Brüche geachtet wird. Es wird betont, dass negative Radikanten und Divisionen durch Null vermieden werden müssen.
Highlight: Bei der Bestimmung des Definitionsbereichs ist es entscheidend, auf Wurzeln und Brüche zu achten und sicherzustellen, dass keine negativen Radikanten oder Divisionen durch Null auftreten.
Für die Berechnung der Nullstellen werden verschiedene Methoden vorgestellt:
Example: Bei der Nullproduktmethode wird eine Gleichung wie 0 = x³ gelöst, indem man erkennt, dass entweder x = 0 oder x = 2 sein muss.
Die Symmetrie der Funktion wird ebenfalls untersucht, wobei zwischen Achsensymmetrie zur y-Achse = f) und Punktsymmetrie zum Ursprung = f) unterschieden wird.
Definition: Achsensymmetrie zur y-Achse liegt vor, wenn f = f gilt, während Punktsymmetrie zum Ursprung durch die Bedingung -f = f charakterisiert wird.
Diese grundlegenden Schritte bilden das Fundament für eine umfassende Kurvendiskussion, die es ermöglicht, den Verlauf und die Eigenschaften einer Funktion detailliert zu analysieren und zu verstehen.
App Store
Google Play
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user
Nele
@nmehrkens_03
Hier ist die optimierte Zusammenfassung in Deutsch:
Die Kurvendiskussionist ein wichtiges Werkzeug in der Mathematik, um Funktionen zu analysieren. Sie umfasst verschiedene Schritte wie die Bestimmung des Definitionsbereichs, Nullstellen, Symmetrie, Extrempunkte und Wendepunkte. Zusätzlich werden Methoden zur Lösung von... Mehr anzeigen
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Die zweite Seite der Kurvendiskussion Checkliste konzentriert sich auf die Analyse von Extrempunkten und Wendepunkten, die für das Verständnis des Funktionsverhaltens entscheidend sind.
Für Extrempunkte wird die allgemeine Form einer Funktion f = ax^n + bx^ + cx + d betrachtet. Die erste und zweite Ableitung werden genutzt, um potenzielle Extremstellen zu identifizieren und zu klassifizieren:
Vocabulary: Ein Extrempunkt ist ein Punkt auf dem Graphen einer Funktion, an dem die Funktion ein lokales Maximum oder Minimum erreicht.
Für Wendepunkte gelten die Bedingungen f'' = 0 und f''' ≠ 0. Es wird zwischen gewöhnlichen Wendepunkten und Sattelpunkten unterschieden:
Example: Ein Wendepunkt W wird bestimmt, indem man x₀ in f einsetzt, um y₀ zu erhalten.
Das Verhalten im Unendlichen wird durch Grenzwertbetrachtungen untersucht:
lim f für x → ∞ und x → -∞
Diese Analyse hilft, das asymptotische Verhalten der Funktion zu verstehen.
Abschließend wird die Bedeutung des Zeichnens des Graphen betont, wobei alle ermittelten Punkte eingetragen und verbunden werden.
Highlight: Die sorgfältige Analyse von Extrempunkten, Wendepunkten und dem Verhalten im Unendlichen ist entscheidend für ein vollständiges Verständnis des Funktionsverlaufs in der Kurvendiskussion.
Diese detaillierte Untersuchung ermöglicht es, ein umfassendes Bild der Funktion zu erstellen und ihre charakteristischen Eigenschaften zu verstehen.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Die dritte Seite widmet sich den Steckbriefaufgaben, einer wichtigen Kategorie von Aufgaben in der Mathematik, bei denen Funktionsgleichungen anhand spezifischer Eigenschaften des Funktionsgraphen bestimmt werden müssen.
Definition: Steckbriefaufgaben sind mathematische Probleme, bei denen eine Funktionsgleichung anhand gegebener Eigenschaften des Funktionsgraphen ermittelt werden soll.
Die Seite präsentiert eine umfassende Tabelle, die verschiedene Eigenschaften des Funktionsgraphen mit den entsprechenden notwendigen Bedingungen für die Funktionsgleichung verknüpft. Hier einige wichtige Beispiele:
Example: Wenn gegeben ist, dass der Graph bei x = 2 eine Extremstelle hat und durch den Punkt P geht, würden die Bedingungen f = 4 und f' = 0 in die Funktionsgleichung einfließen.
Die Tabelle behandelt auch spezielle Fälle wie Symmetrieeigenschaften:
Highlight: Die Kenntnis dieser Bedingungen ist entscheidend für die Lösung von Steckbriefaufgaben und ermöglicht es, komplexe Funktionsgleichungen aus gegebenen Eigenschaften des Graphen zu konstruieren.
Diese systematische Auflistung von Eigenschaften und Bedingungen bildet ein wertvolles Merkblatt für Steckbriefaufgaben, das Schülern hilft, strukturiert an solche Aufgaben heranzugehen und die richtigen mathematischen Werkzeuge anzuwenden.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Die vierte Seite führt in den Gauß-Algorithmus ein, eine leistungsfähige Methode zur Lösung linearer Gleichungssysteme. Diese Seite bietet eine detaillierte Gauß-Algorithmus Anleitung mit einem konkreten Beispiel.
Definition: Der Gauß-Algorithmus ist ein systematisches Verfahren zur Lösung linearer Gleichungssysteme durch schrittweise Elimination von Variablen.
Das präsentierte Beispiel zeigt ein System von drei Gleichungen mit drei Unbekannten:
I. x₁ + x₂ + 2x₃ = 0 II. -2x₁ + x₂ - 6x₃ = 0 III. x₁ - 2x₃ = 3
Die Seite erläutert die zulässigen Operationen im Gauß-Verfahren:
Highlight: Die Kernidee des Gauß-Algorithmus besteht darin, das Gleichungssystem in Stufenform zu bringen, wobei systematisch Variablen eliminiert werden.
Die Gauß-Algorithmus Schritte werden detailliert aufgeführt:
Example: Im gegebenen Beispiel wird x₃ zuerst berechnet , dann x₂ und schließlich x₁.
Die Seite demonstriert auch, wie man die Lösung überprüft, indem man die berechneten Werte in die ursprünglichen Gleichungen einsetzt.
Diese detaillierte Darstellung des Gauß-Algorithmus bietet Schülern eine solide Grundlage für das Verständnis und die Anwendung dieser wichtigen mathematischen Methode zur Lösung linearer Gleichungssysteme.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Die fünfte Seite befasst sich mit den verschiedenen Lösungsszenarien für lineare Gleichungssysteme und ergänzt damit die vorherige Erklärung des Gauß-Algorithmus. Sie präsentiert drei mögliche Fälle:
Definition: Ein lineares Gleichungssystem ist eine Sammlung von linearen Gleichungen mit mehreren Unbekannten, die simultan gelöst werden sollen.
Für den Fall einer eindeutigen Lösung wird ein Beispiel in Matrixform gezeigt:
1 0 0 0 | w
0 1 0 0 | x
0 0 1 0 | y
0 0 0 1 | z
Hier entspricht jede Variable direkt einem Wert: a = w, b = x, c = y, d = z.
Example: In diesem Fall wäre die Lösung L = {}, wobei w, x, y und z die spezifischen Werte für die Variablen a, b, c und d repräsentieren.
Für den Fall ohne Lösung wird eine Matrix präsentiert, die zu einem Widerspruch führt, symbolisiert durch eine Zeile wie:
0 0 0 0 | 1
Dies bedeutet, dass 0 = 1 sein müsste, was unmöglich ist. In diesem Fall ist die Lösungsmenge leer: L = { }.
Highlight: Ein lineares Gleichungssystem ohne Lösung tritt auf, wenn die Gleichungen widersprüchlich sind und keine Wertekombination alle Gleichungen gleichzeitig erfüllen kann.
Für den Fall unendlich vieler Lösungen wird eine Matrix gezeigt, bei der mindestens eine Variable frei wählbar ist, während die anderen davon abhängen. Dies wird durch eine Zeile wie folgt dargestellt:
0 1 1 0 | 3
Hier könnte x₂ = x₂ gesetzt werden, während sich x₃ daraus ergibt.
Vocabulary: Eine freie Variable in einem linearen Gleichungssystem ist eine Variable, deren Wert frei gewählt werden kann, wobei sich die Werte der anderen Variablen daraus ergeben.
Diese Übersicht über die verschiedenen Lösungsszenarien vervollständigt das Verständnis linearer Gleichungssysteme und des Gauß-Algorithmus. Sie zeigt, dass die Analyse eines Gleichungssystems nicht nur zur Bestimmung spezifischer Werte dient, sondern auch wichtige Informationen über die Natur des Systems selbst liefert.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Die erste Seite der Kurvendiskussion Anleitung führt in die wesentlichen Schritte der Funktionsanalyse ein. Sie beginnt mit der Bestimmung des Definitionsbereichs, gefolgt von der Ermittlung der Schnittpunkte mit den Achsen, insbesondere der Nullstellen.
Der Definitionsbereich wird sorgfältig untersucht, wobei besonders auf Wurzeln und Brüche geachtet wird. Es wird betont, dass negative Radikanten und Divisionen durch Null vermieden werden müssen.
Highlight: Bei der Bestimmung des Definitionsbereichs ist es entscheidend, auf Wurzeln und Brüche zu achten und sicherzustellen, dass keine negativen Radikanten oder Divisionen durch Null auftreten.
Für die Berechnung der Nullstellen werden verschiedene Methoden vorgestellt:
Example: Bei der Nullproduktmethode wird eine Gleichung wie 0 = x³ gelöst, indem man erkennt, dass entweder x = 0 oder x = 2 sein muss.
Die Symmetrie der Funktion wird ebenfalls untersucht, wobei zwischen Achsensymmetrie zur y-Achse = f) und Punktsymmetrie zum Ursprung = f) unterschieden wird.
Definition: Achsensymmetrie zur y-Achse liegt vor, wenn f = f gilt, während Punktsymmetrie zum Ursprung durch die Bedingung -f = f charakterisiert wird.
Diese grundlegenden Schritte bilden das Fundament für eine umfassende Kurvendiskussion, die es ermöglicht, den Verlauf und die Eigenschaften einer Funktion detailliert zu analysieren und zu verstehen.
App Store
Google Play
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user