Fächer

Fächer

Mehr

Wie du Extrem- und Wendepunkte sowie Wendetangenten berechnest: Aufgaben und Lösungen für dich zum Üben

Öffnen

Wie du Extrem- und Wendepunkte sowie Wendetangenten berechnest: Aufgaben und Lösungen für dich zum Üben
user profile picture

Geraldine

@geraldine_iwhf

·

16 Follower

Follow

Extremwertaufgaben and Wendepunkte berechnen are crucial concepts in calculus, involving the calculation of extreme points and inflection points of functions. This guide covers the necessary and sufficient conditions for finding these points, along with practical examples and applications to real-world problems.

Key points:

  • Calculating extreme points using first and second derivatives
  • Determining inflection points and their tangent lines
  • Solving optimization problems with constraints
  • Applying these concepts to practical scenarios

28.11.2021

219

Extrem stellen Berechnen
notwendige Bedingung
F(x)=0
Bsp 1
f(x)=x²-3x²
f'(x)= 3x² - 6x
f"(x)= 6x6
hinreichende Bedingung
f(x)=0
f"(x) > O
f"

Öffnen

Inflection Points and Tangent Lines

This page delves into the concept of Wendepunkte berechnen (calculating inflection points) and their associated tangent lines.

The necessary condition for an inflection point is that the second derivative equals zero: f"(x) = 0. This is illustrated through two examples:

  1. f(x) = x³ + 2
  2. f(x) = 4 + 2x - x²

Definition: An inflection point is where the function's concavity changes.

The sufficient condition for an inflection point is that f"(x) = 0 and f'''(x) ≠ 0.

Example: For f(t) = -t³ + 24t² - 117t + 182, the process of finding the inflection point and its tangent line is demonstrated step-by-step.

The concept of Wendetangente berechnen (calculating the tangent line at an inflection point) is explained. The tangent line equation is given as y = mx + b, where m is the slope at the inflection point.

Highlight: The slope of the tangent line at the inflection point represents the maximum rate of change in the function's steepness.

The page concludes with an application example, interpreting the inflection point in the context of visitor numbers, demonstrating how these mathematical concepts relate to real-world scenarios.

Extrem stellen Berechnen
notwendige Bedingung
F(x)=0
Bsp 1
f(x)=x²-3x²
f'(x)= 3x² - 6x
f"(x)= 6x6
hinreichende Bedingung
f(x)=0
f"(x) > O
f"

Öffnen

Optimization Problems with Constraints

This page focuses on Extremwertaufgaben mit Nebenbedingungen (optimization problems with constraints), a crucial application of calculus in real-world problem-solving.

The process for solving these problems is outlined in four steps:

  1. Describe the target variable to be optimized.
  2. Identify the constraints that show relationships between variables.
  3. Determine the objective function that depends on only one variable.
  4. Analyze the objective function, considering its domain and constraints.

Example: A problem involving maximizing the area of a rectangle with a fixed perimeter is used to illustrate this process.

The objective function is derived as A(a) = a(25-a), where 'a' is one side of the rectangle and the constraint is that the perimeter is 50 cm.

Highlight: The domain of the function is crucial and is determined based on the physical constraints of the problem.

The necessary condition for extrema is found by setting the derivative of the objective function to zero: A'(a) = 0.

Vocabulary: The hinreichende Bedingung (sufficient condition) for a maximum is that A"(a) < 0 at the critical point.

The solution process demonstrates how to incorporate the constraint into the objective function, solve for the optimal value, and verify it using the sufficient condition.

This approach to Extremwertprobleme (optimization problems) showcases the practical application of calculus in solving real-world problems, particularly those involving geometric or physical constraints.

Extrem stellen Berechnen
notwendige Bedingung
F(x)=0
Bsp 1
f(x)=x²-3x²
f'(x)= 3x² - 6x
f"(x)= 6x6
hinreichende Bedingung
f(x)=0
f"(x) > O
f"

Öffnen

Calculating Extreme Points

This page focuses on the methods for Extrempunkte berechnen (calculating extreme points) of functions.

The necessary condition for extreme points is that the first derivative of the function equals zero: f'(x) = 0. This is demonstrated through two examples.

Example: For f(x) = x³ - 3x², the first derivative is f'(x) = 3x² - 6x. Setting this to zero and solving yields potential extreme points.

The sufficient condition for extreme points involves examining the second derivative:

  • If f"(x) > 0, it's a local minimum
  • If f"(x) < 0, it's a local maximum

Highlight: The sign change test (Vorzeichenwechselkriterium) is used to determine the nature of extreme points when f"(x) = 0.

A more complex example is provided with f(x) = -1/8x⁴ + 1/3x³ + 1, demonstrating the process of finding and classifying extreme points.

Vocabulary: A saddle point (Sattelpunkt) occurs when f'(x) = 0 and f"(x) = 0, but there's no extreme value.

The page concludes with a detailed analysis of the function's behavior around its critical points, including the slope and concavity.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Wie du Extrem- und Wendepunkte sowie Wendetangenten berechnest: Aufgaben und Lösungen für dich zum Üben

user profile picture

Geraldine

@geraldine_iwhf

·

16 Follower

Follow

Extremwertaufgaben and Wendepunkte berechnen are crucial concepts in calculus, involving the calculation of extreme points and inflection points of functions. This guide covers the necessary and sufficient conditions for finding these points, along with practical examples and applications to real-world problems.

Key points:

  • Calculating extreme points using first and second derivatives
  • Determining inflection points and their tangent lines
  • Solving optimization problems with constraints
  • Applying these concepts to practical scenarios

28.11.2021

219

 

12

 

Mathe

4

Extrem stellen Berechnen
notwendige Bedingung
F(x)=0
Bsp 1
f(x)=x²-3x²
f'(x)= 3x² - 6x
f"(x)= 6x6
hinreichende Bedingung
f(x)=0
f"(x) > O
f"

Inflection Points and Tangent Lines

This page delves into the concept of Wendepunkte berechnen (calculating inflection points) and their associated tangent lines.

The necessary condition for an inflection point is that the second derivative equals zero: f"(x) = 0. This is illustrated through two examples:

  1. f(x) = x³ + 2
  2. f(x) = 4 + 2x - x²

Definition: An inflection point is where the function's concavity changes.

The sufficient condition for an inflection point is that f"(x) = 0 and f'''(x) ≠ 0.

Example: For f(t) = -t³ + 24t² - 117t + 182, the process of finding the inflection point and its tangent line is demonstrated step-by-step.

The concept of Wendetangente berechnen (calculating the tangent line at an inflection point) is explained. The tangent line equation is given as y = mx + b, where m is the slope at the inflection point.

Highlight: The slope of the tangent line at the inflection point represents the maximum rate of change in the function's steepness.

The page concludes with an application example, interpreting the inflection point in the context of visitor numbers, demonstrating how these mathematical concepts relate to real-world scenarios.

Extrem stellen Berechnen
notwendige Bedingung
F(x)=0
Bsp 1
f(x)=x²-3x²
f'(x)= 3x² - 6x
f"(x)= 6x6
hinreichende Bedingung
f(x)=0
f"(x) > O
f"

Optimization Problems with Constraints

This page focuses on Extremwertaufgaben mit Nebenbedingungen (optimization problems with constraints), a crucial application of calculus in real-world problem-solving.

The process for solving these problems is outlined in four steps:

  1. Describe the target variable to be optimized.
  2. Identify the constraints that show relationships between variables.
  3. Determine the objective function that depends on only one variable.
  4. Analyze the objective function, considering its domain and constraints.

Example: A problem involving maximizing the area of a rectangle with a fixed perimeter is used to illustrate this process.

The objective function is derived as A(a) = a(25-a), where 'a' is one side of the rectangle and the constraint is that the perimeter is 50 cm.

Highlight: The domain of the function is crucial and is determined based on the physical constraints of the problem.

The necessary condition for extrema is found by setting the derivative of the objective function to zero: A'(a) = 0.

Vocabulary: The hinreichende Bedingung (sufficient condition) for a maximum is that A"(a) < 0 at the critical point.

The solution process demonstrates how to incorporate the constraint into the objective function, solve for the optimal value, and verify it using the sufficient condition.

This approach to Extremwertprobleme (optimization problems) showcases the practical application of calculus in solving real-world problems, particularly those involving geometric or physical constraints.

Extrem stellen Berechnen
notwendige Bedingung
F(x)=0
Bsp 1
f(x)=x²-3x²
f'(x)= 3x² - 6x
f"(x)= 6x6
hinreichende Bedingung
f(x)=0
f"(x) > O
f"

Calculating Extreme Points

This page focuses on the methods for Extrempunkte berechnen (calculating extreme points) of functions.

The necessary condition for extreme points is that the first derivative of the function equals zero: f'(x) = 0. This is demonstrated through two examples.

Example: For f(x) = x³ - 3x², the first derivative is f'(x) = 3x² - 6x. Setting this to zero and solving yields potential extreme points.

The sufficient condition for extreme points involves examining the second derivative:

  • If f"(x) > 0, it's a local minimum
  • If f"(x) < 0, it's a local maximum

Highlight: The sign change test (Vorzeichenwechselkriterium) is used to determine the nature of extreme points when f"(x) = 0.

A more complex example is provided with f(x) = -1/8x⁴ + 1/3x³ + 1, demonstrating the process of finding and classifying extreme points.

Vocabulary: A saddle point (Sattelpunkt) occurs when f'(x) = 0 and f"(x) = 0, but there's no extreme value.

The page concludes with a detailed analysis of the function's behavior around its critical points, including the slope and concavity.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.