Fächer

Fächer

Mehr

Chemie Abitur 2023: Aufgaben und Lösungen für Glucose und Optische Aktivität

Öffnen

Chemie Abitur 2023: Aufgaben und Lösungen für Glucose und Optische Aktivität
user profile picture

Evelina

@evelina_qnyn

·

10 Follower

Follow

Eine umfassende Anleitung zur Chemie-Abitur 2023 Kohlenhydrate und Peptide Vorbereitung. Der Fokus liegt auf Monosacchariden wie Glucose und Fructose, deren Strukturen und chemischen Eigenschaften. Besondere Aufmerksamkeit wird den Unterschieden zwischen D-Glucose und L-Glucose sowie der optischen Aktivität und Chiralitätszentren in der Chemie gewidmet.

  • Detaillierte Erklärungen zu Monosacchariden, insbesondere Glucose und Fructose
  • Analyse der Strukturen von D- und L-Glucose sowie deren Eigenschaften
  • Erläuterung von Chiralitätszentren, optischer Aktivität und Stereoisomerie
  • Beschreibung wichtiger Nachweisreaktionen wie der Fehlingprobe

4.4.2023

4993

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Overall Summary

Chemical equilibrium and optical activity in organic compounds are fundamental concepts in chemistry with wide-ranging applications.

  • Chemical equilibrium describes a balanced state in reversible reactions, influenced by factors like concentration and pressure.
  • Optical activity, observed in compounds like lactic acid, results from molecular chirality and affects light polarization.
  • Understanding these concepts is crucial for various fields, including biochemistry, pharmaceuticals, and industrial processes.
  • Examples from everyday life, such as carbonated beverages and muscle fatigue, illustrate the practical relevance of these chemical principles.
Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Introduction to Monosaccharides: Glucose and Fructose

This section introduces key concepts related to monosaccharides, focusing on glucose and fructose.

Glucose, a crucial monosaccharide with the formula C6H12O6, is highlighted for its structural importance. The arrangement of hydroxyl groups at chiral centers is emphasized, with a mnemonic device "ta-tü-ta-ta" provided for remembering the configuration.

Vocabulary: Aldose - A monosaccharide containing an aldehyde group, which can be detected using silver mirror test and Fehling's test.

Glucose primarily exists in a ring form known as pyranose structure, formed through nucleophilic addition between the hydroxyl group of the C5 atom and the carbonyl group at the C1 atom.

Fructose, sharing the same molecular formula as glucose, is introduced as a ketose. Its ability to form ring structures is explained, with two possibilities:

  1. Reaction between the carbonyl group and the hydroxyl group at the C5 atom, forming a five-membered ring (fructofuranose).
  2. Reaction between the carbonyl group and the hydroxyl group of the C6 atom, resulting in a six-membered ring (fructopyranose).

Example: The structural representations of α-D-fructofuranose, β-D-fructofuranose, α-D-fructopyranose, and β-D-fructopyranose are provided to illustrate the different ring formations of fructose.

This introduction sets the foundation for understanding the structural complexity and diversity of monosaccharides, which is crucial for further study in biochemistry and organic chemistry.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Chirality and Optical Activity

This section delves into the concepts of chirality and optical activity, which are fundamental in understanding the three-dimensional structure of molecules and their interactions with light.

Chiral centers, also known as asymmetric atoms, are defined as carbon atoms bonded to four different substituents. These centers are typically marked with an asterisk (*) in molecular representations. It's emphasized that determining chirality sometimes requires looking beyond the immediately bonded atoms.

Definition: A chiral center or asymmetric atom is a carbon atom bonded to four different substituents, creating a molecule that is not superimposable on its mirror image.

The phenomenon of optical activity is explained in detail. When plane-polarized light (light waves oscillating in a single plane, filtered through a polarizer) passes through a solution containing an optically active substance, the plane of polarization is rotated by a specific angle.

Example: Lactic acid is presented as an example of an optically active substance. It exists in two forms: left-rotating (levorotatory) and right-rotating (dextrorotatory) lactic acid.

The concept of enantiomers is introduced – molecules that are mirror images of each other. A racemic mixture, containing equal amounts of left- and right-rotating molecules, is defined as not rotating the plane of polarization.

Highlight: Molecules with at least one chiral center are generally chiral and optically active. This property is crucial in many biological and chemical processes.

This section provides a comprehensive understanding of chirality and optical activity, concepts that are essential in fields such as organic chemistry, biochemistry, and pharmacology. The ability to recognize and understand these properties is crucial for predicting molecular behavior and interactions in various scientific and industrial applications.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

D/L Configuration and Stereoisomerism

This section explores the D/L configuration system and the broader concept of stereoisomerism, which are crucial for understanding the three-dimensional structure of molecules.

The D/L configuration system is introduced as a method to distinguish between two enantiomers, which are isomers that are mirror images of each other. The designation is based on the position of the lowest hydroxyl group in the Fischer projection:

Definition: In the D/L system, if the lowest hydroxyl group is on the right side in the Fischer projection, it's designated as D-form. If it's on the left side, it's designated as L-form.

Enantiomers are further explained as molecules that cannot be superimposed on each other by rotation, despite having the same molecular formula and bonding sequence.

Example: D-Glucose and L-Glucose are presented as examples of enantiomers, illustrating their mirror-image relationship.

The concept of stereoisomerism is then introduced. Stereoisomers are defined as molecules with the same molecular formula and constitution (structure) but differing in the spatial arrangement of their atoms.

Vocabulary: Stereoisomers - Isomers that have the same molecular formula and bonding sequence but differ in the three-dimensional orientation of their atoms.

Two types of stereoisomers are discussed:

  1. Enantiomers: Formed when the spatial arrangement at all chiral centers is changed.
  2. Diastereomers: Formed when the spatial arrangement is changed at only some of the chiral centers.

An important rule is highlighted: for a molecule with n chiral centers, there can be a maximum of 2^n stereoisomers.

The concept of anomers is also introduced, particularly relevant to carbohydrate chemistry:

Definition: Anomers are stereoisomers that differ in configuration at the anomeric carbon atom, which is the carbon atom that can open the ring to form an aldehyde group.

This section provides a comprehensive overview of molecular stereochemistry, emphasizing the importance of spatial arrangements in determining molecular properties and behaviors. Understanding these concepts is crucial in fields such as organic synthesis, drug design, and biochemistry, where the three-dimensional structure of molecules plays a critical role in their function and interactions.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Fehling's Test for Aldoses

This section details the Fehling's test, a crucial analytical method for detecting aldehyde groups, particularly in aldoses (sugars with an aldehyde group).

The procedure for the Fehling's test is outlined:

  1. Combine copper(II) sulfate solution ("Fehling I") with dilute sodium hydroxide solution containing potassium sodium tartrate ("Fehling II").
  2. Add a small amount of the sample to be tested.
  3. Heat the mixture.

Highlight: The presence of an aldehyde in the sample is indicated by a brick-red coloration.

The chemical reactions involved in the Fehling's test are explained in detail:

  1. Reduction reaction: Cu²⁺ ions are reduced to Cu⁺, forming cuprous oxide (Cu₂O).
  2. Oxidation reaction: The aldehyde group of the sugar is oxidized to a carboxyl group.

The overall redox reaction is presented, showing the conversion of the aldehyde to a carboxylate ion and the reduction of copper(II) to copper(I) oxide.

Example: The reaction equations are provided, illustrating the electron transfer and the formation of the characteristic brick-red cuprous oxide precipitate.

This test is particularly important in carbohydrate chemistry and biochemistry for identifying reducing sugars. It's a classic example of how chemical tests can be used to identify specific functional groups in organic compounds.

The Fehling's test demonstrates the reducing properties of aldoses and is a prime example of how understanding chemical reactivity can be applied in analytical procedures. This knowledge is essential for students in chemistry and related fields, as it forms the basis for more complex analytical techniques and helps in understanding the chemical behavior of important biological molecules like sugars.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Fischer Projection

This section introduces the Fischer projection, a crucial tool in organic chemistry for representing the three-dimensional structure of molecules in a two-dimensional format.

The rules for constructing a Fischer projection are outlined:

  1. The longest carbon chain is drawn vertically, with the carbon atom of the highest oxidation state at the top.
  2. The molecule is oriented so that substituents at asymmetric carbon atoms point backwards.
  3. Bonds pointing backwards are represented by vertical lines.

Definition: Fischer projection is a two-dimensional representation of a three-dimensional molecule, particularly useful for depicting stereochemistry of carbohydrates and amino acids.

This method of representation is particularly important in carbohydrate chemistry and in depicting the stereochemistry of organic molecules. It allows chemists to easily visualize and compare the spatial arrangements of atoms in complex molecules.

Highlight: Understanding Fischer projections is crucial for correctly identifying and naming stereoisomers, particularly in the context of D/L nomenclature in carbohydrates and amino acids.

The Fischer projection is a fundamental concept in stereochemistry, providing a standardized way to represent and analyze the three-dimensional structure of molecules on a two-dimensional surface. This skill is essential for students and researchers in organic chemistry, biochemistry, and related fields, as it forms the basis for understanding more complex stereochemical relationships and nomenclature systems.

Mastering the use of Fischer projections enables chemists to effectively communicate and analyze molecular structures, particularly in the context of stereochemistry and optical activity. This representation method is a key tool in the study of biomolecules, pharmaceutical compounds, and in the broader field of organic synthesis.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Öffnen

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Chemie Abitur 2023: Aufgaben und Lösungen für Glucose und Optische Aktivität

user profile picture

Evelina

@evelina_qnyn

·

10 Follower

Follow

Eine umfassende Anleitung zur Chemie-Abitur 2023 Kohlenhydrate und Peptide Vorbereitung. Der Fokus liegt auf Monosacchariden wie Glucose und Fructose, deren Strukturen und chemischen Eigenschaften. Besondere Aufmerksamkeit wird den Unterschieden zwischen D-Glucose und L-Glucose sowie der optischen Aktivität und Chiralitätszentren in der Chemie gewidmet.

  • Detaillierte Erklärungen zu Monosacchariden, insbesondere Glucose und Fructose
  • Analyse der Strukturen von D- und L-Glucose sowie deren Eigenschaften
  • Erläuterung von Chiralitätszentren, optischer Aktivität und Stereoisomerie
  • Beschreibung wichtiger Nachweisreaktionen wie der Fehlingprobe

4.4.2023

4993

 

12/13

 

Chemie

181

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Overall Summary

Chemical equilibrium and optical activity in organic compounds are fundamental concepts in chemistry with wide-ranging applications.

  • Chemical equilibrium describes a balanced state in reversible reactions, influenced by factors like concentration and pressure.
  • Optical activity, observed in compounds like lactic acid, results from molecular chirality and affects light polarization.
  • Understanding these concepts is crucial for various fields, including biochemistry, pharmaceuticals, and industrial processes.
  • Examples from everyday life, such as carbonated beverages and muscle fatigue, illustrate the practical relevance of these chemical principles.
Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Introduction to Monosaccharides: Glucose and Fructose

This section introduces key concepts related to monosaccharides, focusing on glucose and fructose.

Glucose, a crucial monosaccharide with the formula C6H12O6, is highlighted for its structural importance. The arrangement of hydroxyl groups at chiral centers is emphasized, with a mnemonic device "ta-tü-ta-ta" provided for remembering the configuration.

Vocabulary: Aldose - A monosaccharide containing an aldehyde group, which can be detected using silver mirror test and Fehling's test.

Glucose primarily exists in a ring form known as pyranose structure, formed through nucleophilic addition between the hydroxyl group of the C5 atom and the carbonyl group at the C1 atom.

Fructose, sharing the same molecular formula as glucose, is introduced as a ketose. Its ability to form ring structures is explained, with two possibilities:

  1. Reaction between the carbonyl group and the hydroxyl group at the C5 atom, forming a five-membered ring (fructofuranose).
  2. Reaction between the carbonyl group and the hydroxyl group of the C6 atom, resulting in a six-membered ring (fructopyranose).

Example: The structural representations of α-D-fructofuranose, β-D-fructofuranose, α-D-fructopyranose, and β-D-fructopyranose are provided to illustrate the different ring formations of fructose.

This introduction sets the foundation for understanding the structural complexity and diversity of monosaccharides, which is crucial for further study in biochemistry and organic chemistry.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Chirality and Optical Activity

This section delves into the concepts of chirality and optical activity, which are fundamental in understanding the three-dimensional structure of molecules and their interactions with light.

Chiral centers, also known as asymmetric atoms, are defined as carbon atoms bonded to four different substituents. These centers are typically marked with an asterisk (*) in molecular representations. It's emphasized that determining chirality sometimes requires looking beyond the immediately bonded atoms.

Definition: A chiral center or asymmetric atom is a carbon atom bonded to four different substituents, creating a molecule that is not superimposable on its mirror image.

The phenomenon of optical activity is explained in detail. When plane-polarized light (light waves oscillating in a single plane, filtered through a polarizer) passes through a solution containing an optically active substance, the plane of polarization is rotated by a specific angle.

Example: Lactic acid is presented as an example of an optically active substance. It exists in two forms: left-rotating (levorotatory) and right-rotating (dextrorotatory) lactic acid.

The concept of enantiomers is introduced – molecules that are mirror images of each other. A racemic mixture, containing equal amounts of left- and right-rotating molecules, is defined as not rotating the plane of polarization.

Highlight: Molecules with at least one chiral center are generally chiral and optically active. This property is crucial in many biological and chemical processes.

This section provides a comprehensive understanding of chirality and optical activity, concepts that are essential in fields such as organic chemistry, biochemistry, and pharmacology. The ability to recognize and understand these properties is crucial for predicting molecular behavior and interactions in various scientific and industrial applications.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

D/L Configuration and Stereoisomerism

This section explores the D/L configuration system and the broader concept of stereoisomerism, which are crucial for understanding the three-dimensional structure of molecules.

The D/L configuration system is introduced as a method to distinguish between two enantiomers, which are isomers that are mirror images of each other. The designation is based on the position of the lowest hydroxyl group in the Fischer projection:

Definition: In the D/L system, if the lowest hydroxyl group is on the right side in the Fischer projection, it's designated as D-form. If it's on the left side, it's designated as L-form.

Enantiomers are further explained as molecules that cannot be superimposed on each other by rotation, despite having the same molecular formula and bonding sequence.

Example: D-Glucose and L-Glucose are presented as examples of enantiomers, illustrating their mirror-image relationship.

The concept of stereoisomerism is then introduced. Stereoisomers are defined as molecules with the same molecular formula and constitution (structure) but differing in the spatial arrangement of their atoms.

Vocabulary: Stereoisomers - Isomers that have the same molecular formula and bonding sequence but differ in the three-dimensional orientation of their atoms.

Two types of stereoisomers are discussed:

  1. Enantiomers: Formed when the spatial arrangement at all chiral centers is changed.
  2. Diastereomers: Formed when the spatial arrangement is changed at only some of the chiral centers.

An important rule is highlighted: for a molecule with n chiral centers, there can be a maximum of 2^n stereoisomers.

The concept of anomers is also introduced, particularly relevant to carbohydrate chemistry:

Definition: Anomers are stereoisomers that differ in configuration at the anomeric carbon atom, which is the carbon atom that can open the ring to form an aldehyde group.

This section provides a comprehensive overview of molecular stereochemistry, emphasizing the importance of spatial arrangements in determining molecular properties and behaviors. Understanding these concepts is crucial in fields such as organic synthesis, drug design, and biochemistry, where the three-dimensional structure of molecules plays a critical role in their function and interactions.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Fehling's Test for Aldoses

This section details the Fehling's test, a crucial analytical method for detecting aldehyde groups, particularly in aldoses (sugars with an aldehyde group).

The procedure for the Fehling's test is outlined:

  1. Combine copper(II) sulfate solution ("Fehling I") with dilute sodium hydroxide solution containing potassium sodium tartrate ("Fehling II").
  2. Add a small amount of the sample to be tested.
  3. Heat the mixture.

Highlight: The presence of an aldehyde in the sample is indicated by a brick-red coloration.

The chemical reactions involved in the Fehling's test are explained in detail:

  1. Reduction reaction: Cu²⁺ ions are reduced to Cu⁺, forming cuprous oxide (Cu₂O).
  2. Oxidation reaction: The aldehyde group of the sugar is oxidized to a carboxyl group.

The overall redox reaction is presented, showing the conversion of the aldehyde to a carboxylate ion and the reduction of copper(II) to copper(I) oxide.

Example: The reaction equations are provided, illustrating the electron transfer and the formation of the characteristic brick-red cuprous oxide precipitate.

This test is particularly important in carbohydrate chemistry and biochemistry for identifying reducing sugars. It's a classic example of how chemical tests can be used to identify specific functional groups in organic compounds.

The Fehling's test demonstrates the reducing properties of aldoses and is a prime example of how understanding chemical reactivity can be applied in analytical procedures. This knowledge is essential for students in chemistry and related fields, as it forms the basis for more complex analytical techniques and helps in understanding the chemical behavior of important biological molecules like sugars.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Fischer Projection

This section introduces the Fischer projection, a crucial tool in organic chemistry for representing the three-dimensional structure of molecules in a two-dimensional format.

The rules for constructing a Fischer projection are outlined:

  1. The longest carbon chain is drawn vertically, with the carbon atom of the highest oxidation state at the top.
  2. The molecule is oriented so that substituents at asymmetric carbon atoms point backwards.
  3. Bonds pointing backwards are represented by vertical lines.

Definition: Fischer projection is a two-dimensional representation of a three-dimensional molecule, particularly useful for depicting stereochemistry of carbohydrates and amino acids.

This method of representation is particularly important in carbohydrate chemistry and in depicting the stereochemistry of organic molecules. It allows chemists to easily visualize and compare the spatial arrangements of atoms in complex molecules.

Highlight: Understanding Fischer projections is crucial for correctly identifying and naming stereoisomers, particularly in the context of D/L nomenclature in carbohydrates and amino acids.

The Fischer projection is a fundamental concept in stereochemistry, providing a standardized way to represent and analyze the three-dimensional structure of molecules on a two-dimensional surface. This skill is essential for students and researchers in organic chemistry, biochemistry, and related fields, as it forms the basis for understanding more complex stereochemical relationships and nomenclature systems.

Mastering the use of Fischer projections enables chemists to effectively communicate and analyze molecular structures, particularly in the context of stereochemistry and optical activity. This representation method is a key tool in the study of biomolecules, pharmaceutical compounds, and in the broader field of organic synthesis.

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Chemie-Abitur CK 2023
Kohlenhydrate & Peptide
Monosaccharide:
Glucose
●
Monosaccharid
C6H12O10
Position Hydroxygruppen an Chiralitätszentren

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.