Fächer

Fächer

Mehr

Binomialverteilung & Bernoulli Formel erklärt - Einfache Beispiele

Öffnen

Binomialverteilung & Bernoulli Formel erklärt - Einfache Beispiele
user profile picture

leahnrdkmp

@leonor_pmys

·

66 Follower

Follow

Das Bernoulli-Experiment ist ein grundlegendes Konzept in der Stochastik mit zwei möglichen Ausgängen. Die Bernoulli-Formel wird verwendet, um die Wahrscheinlichkeit einer bestimmten Anzahl von Erfolgen in einer Reihe von unabhängigen Versuchen zu berechnen. Die Binomialverteilung ist eine wichtige Wahrscheinlichkeitsverteilung, die auf dem Bernoulli-Experiment basiert. Wichtige Aspekte sind:

  • Die Berechnung von Wahrscheinlichkeiten für exakte, kumulierte und intervallbasierte Ereignisse
  • Kennzahlen wie Erwartungswert, Varianz und Standardabweichung
  • Anwendung der Sigma-Regel für Konfidenzintervalle
  • Berechnung von p und n in speziellen Fällen
  • Eigenschaften der Binomialverteilung wie Symmetrie und Maximum

20.8.2021

685

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Vertrauensintervalle und Sicherheitswahrscheinlichkeiten

Vertrauensintervalle und Sicherheitswahrscheinlichkeiten sind wichtige Konzepte in der Statistik:

  1. 90% Vertrauensintervall: [μ - 1,64σ, μ + 1,64σ]
  2. 95% Vertrauensintervall: [μ - 1,96σ, μ + 1,96σ]
  3. 99% Vertrauensintervall: [μ - 2,58σ, μ + 2,58σ]

Diese Intervalle geben an, in welchem Bereich der wahre Wert mit einer bestimmten Wahrscheinlichkeit liegt.

Highlight: Die Wahl des Vertrauensintervalls hängt von der gewünschten Genauigkeit und dem Anwendungskontext ab.

Example: Bei einem Bernoulli-Experiment mit n = 1000 und p = 0,8 kann man das 99% Vertrauensintervall berechnen, um eine sehr genaue Abschätzung der zu erwartenden Trefferzahl zu erhalten.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Kumulierte Binomialverteilung

Die kumulierte (summierte) Binomialverteilung ist ein wichtiges Konzept in der Stochastik. Sie gibt die Wahrscheinlichkeit an, höchstens k Treffer zu erzielen:

P(X ≤ k) = F(n,p,k) = Σ(i=0 bis k) B(n,p,i)

Diese Formel ist besonders nützlich für die Berechnung von Wahrscheinlichkeiten in verschiedenen Intervallen:

  1. Mehr als k Treffer: P(X > k) = 1 - F(n,p,k)
  2. Zwischen a und b Treffer: P(a ≤ X ≤ b) = F(n,p,b) - F(n,p,a-1)
  3. Mindestens a und höchstens b Treffer: P(a ≤ X ≤ b) = F(n,p,b) - F(n,p,a-1)

Example: Bei einem Bernoulli-Experiment mit n=10 und p=0,4 kann man die Wahrscheinlichkeit für höchstens 5 Treffer mit F(10,0.4,5) berechnen.

Highlight: Die kumulierte Binomialverteilung ist besonders nützlich für die Berechnung von Wahrscheinlichkeiten in Intervallen und für "mindestens" oder "höchstens" Szenarien.

Vocabulary: Kumulierte Wahrscheinlichkeit - Die Summe der Wahrscheinlichkeiten für alle Ergebnisse bis zu einem bestimmten Wert.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Kennzahlen der Binomialverteilung

Die Binomialverteilung hat wichtige Kennzahlen, die ihre Eigenschaften beschreiben:

  1. Erwartungswert: E(X) = n * p
  2. Varianz: V(X) = n * p * q
  3. Standardabweichung: σ(X) = √(n * p * q)

Diese Kennzahlen helfen, die Verteilung zu charakterisieren und Vorhersagen zu treffen.

Die grafische Darstellung der Binomialverteilung erfolgt oft in einem Säulendiagramm, das die Wahrscheinlichkeiten für jedes k zeigt. Die kumulierte Binomialverteilung wird als Treppenfunktion dargestellt.

Definition: Der Erwartungswert ist die Zahl, die die Zufallsvariable im Mittel annimmt.

Highlight: Die Eigenschaften der Binomialverteilung ändern sich mit p und n. Je größer p, desto weiter rechts liegt das Maximum der Verteilung. Mit wachsendem n werden die Verteilungen flacher und symmetrischer.

Example: Für p = 0,5 ist die Verteilung symmetrisch, was bedeutet: B(n,p,k) = B(n,p,n-k)

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Bernoulli-Experiment und Binomialverteilung

Das Bernoulli-Experiment ist ein fundamentales Konzept in der Stochastik. Es beschreibt ein Zufallsexperiment mit genau zwei möglichen Ausgängen: Erfolg (E) mit Wahrscheinlichkeit P(E) = p oder Misserfolg (Ē) mit Wahrscheinlichkeit P(Ē) = 1 - p = q.

Die Bernoulli-Kette entsteht, wenn das Experiment mehrfach hintereinander durchgeführt wird, wobei sich die Trefferwahrscheinlichkeit nicht ändert. Die Bernoulli-Formel wird verwendet, um die Wahrscheinlichkeit für eine bestimmte Anzahl von Treffern in einer solchen Kette zu berechnen:

P(X = k) = B(n,p,k) = (n über k) * p^k * q^(n-k)

Hierbei ist X die Zufallsgröße, die die Anzahl der Treffer angibt und als binomialverteilt bezeichnet wird.

Vocabulary: Binomialkoeffizient - Der Term (n über k) wird als Binomialkoeffizient bezeichnet und gibt die Anzahl der Möglichkeiten an, k Elemente aus n Elementen auszuwählen.

Example: Ein praktisches Bernoulli-Experiment Beispiel wäre das mehrmalige Werfen einer Münze, wobei "Kopf" als Erfolg und "Zahl" als Misserfolg definiert wird.

Highlight: Die Bernoulli-Formel erklärt die Wahrscheinlichkeitsverteilung für eine feste Anzahl von Versuchen mit konstanter Erfolgswahrscheinlichkeit.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Maximum und Erwartungswert bei der Binomialverteilung

Das Maximum einer Binomialverteilung hat besondere Eigenschaften:

  1. Wenn E(X) ganzzahlig ist, liegt das Maximum genau an der Stelle k = E(X).
  2. Wenn E(X) nicht ganzzahlig ist, liegt das Maximum bei der nächstgelegenen ganzen Zahl zu E(X).

Highlight: Die Position des Maximums in der Binomialverteilung hängt direkt mit dem Erwartungswert zusammen.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Berechnung von p und n

In manchen Fällen müssen die Parameter p (Trefferwahrscheinlichkeit) oder n (Länge der Bernoulli-Kette) berechnet werden:

  1. Berechnung von p: Wenn die Wahrscheinlichkeit für eine bestimmte Anzahl von Treffern gegeben ist, kann p durch Lösen der entsprechenden Gleichung gefunden werden.

  2. Berechnung von n: Wenn die Wahrscheinlichkeit für mindestens oder höchstens eine bestimmte Anzahl von Treffern gegeben ist, kann n durch schrittweises Erhöhen gefunden werden.

Example: Wenn P(X = 10) = 0,9 bei n = 14 gegeben ist, kann p durch Lösen der Gleichung 0,9 = (14 über 10) * p^10 * (1-p)^4 gefunden werden.

Highlight: Die Berechnung von p und n erfordert oft den Einsatz von Taschenrechnern oder Computerprogrammen, da die Gleichungen komplex sein können.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Sigma-Regel

Die Sigma-Regel ist ein wichtiges Werkzeug in der Stochastik, das Aussagen über die Wahrscheinlichkeit von Abweichungen vom Erwartungswert macht:

  1. 68,3% der Werte liegen im Intervall [μ - σ, μ + σ]
  2. 95,5% der Werte liegen im Intervall [μ - 2σ, μ + 2σ]
  3. 99,7% der Werte liegen im Intervall [μ - 3σ, μ + 3σ]

Dabei ist μ der Erwartungswert und σ die Standardabweichung.

Highlight: Die Sigma-Regel ist besonders nützlich für schnelle Abschätzungen und gilt umso genauer, je größer n ist.

Example: Bei einem Bernoulli-Experiment mit n = 200 und p = 0,9 kann man mit der Sigma-Regel abschätzen, wie viele Treffer mit einer Wahrscheinlichkeit von 95% erzielt werden.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Öffnen

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Binomialverteilung & Bernoulli Formel erklärt - Einfache Beispiele

user profile picture

leahnrdkmp

@leonor_pmys

·

66 Follower

Follow

Das Bernoulli-Experiment ist ein grundlegendes Konzept in der Stochastik mit zwei möglichen Ausgängen. Die Bernoulli-Formel wird verwendet, um die Wahrscheinlichkeit einer bestimmten Anzahl von Erfolgen in einer Reihe von unabhängigen Versuchen zu berechnen. Die Binomialverteilung ist eine wichtige Wahrscheinlichkeitsverteilung, die auf dem Bernoulli-Experiment basiert. Wichtige Aspekte sind:

  • Die Berechnung von Wahrscheinlichkeiten für exakte, kumulierte und intervallbasierte Ereignisse
  • Kennzahlen wie Erwartungswert, Varianz und Standardabweichung
  • Anwendung der Sigma-Regel für Konfidenzintervalle
  • Berechnung von p und n in speziellen Fällen
  • Eigenschaften der Binomialverteilung wie Symmetrie und Maximum

20.8.2021

685

 

11/12

 

Mathe

13

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Vertrauensintervalle und Sicherheitswahrscheinlichkeiten

Vertrauensintervalle und Sicherheitswahrscheinlichkeiten sind wichtige Konzepte in der Statistik:

  1. 90% Vertrauensintervall: [μ - 1,64σ, μ + 1,64σ]
  2. 95% Vertrauensintervall: [μ - 1,96σ, μ + 1,96σ]
  3. 99% Vertrauensintervall: [μ - 2,58σ, μ + 2,58σ]

Diese Intervalle geben an, in welchem Bereich der wahre Wert mit einer bestimmten Wahrscheinlichkeit liegt.

Highlight: Die Wahl des Vertrauensintervalls hängt von der gewünschten Genauigkeit und dem Anwendungskontext ab.

Example: Bei einem Bernoulli-Experiment mit n = 1000 und p = 0,8 kann man das 99% Vertrauensintervall berechnen, um eine sehr genaue Abschätzung der zu erwartenden Trefferzahl zu erhalten.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Kumulierte Binomialverteilung

Die kumulierte (summierte) Binomialverteilung ist ein wichtiges Konzept in der Stochastik. Sie gibt die Wahrscheinlichkeit an, höchstens k Treffer zu erzielen:

P(X ≤ k) = F(n,p,k) = Σ(i=0 bis k) B(n,p,i)

Diese Formel ist besonders nützlich für die Berechnung von Wahrscheinlichkeiten in verschiedenen Intervallen:

  1. Mehr als k Treffer: P(X > k) = 1 - F(n,p,k)
  2. Zwischen a und b Treffer: P(a ≤ X ≤ b) = F(n,p,b) - F(n,p,a-1)
  3. Mindestens a und höchstens b Treffer: P(a ≤ X ≤ b) = F(n,p,b) - F(n,p,a-1)

Example: Bei einem Bernoulli-Experiment mit n=10 und p=0,4 kann man die Wahrscheinlichkeit für höchstens 5 Treffer mit F(10,0.4,5) berechnen.

Highlight: Die kumulierte Binomialverteilung ist besonders nützlich für die Berechnung von Wahrscheinlichkeiten in Intervallen und für "mindestens" oder "höchstens" Szenarien.

Vocabulary: Kumulierte Wahrscheinlichkeit - Die Summe der Wahrscheinlichkeiten für alle Ergebnisse bis zu einem bestimmten Wert.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Kennzahlen der Binomialverteilung

Die Binomialverteilung hat wichtige Kennzahlen, die ihre Eigenschaften beschreiben:

  1. Erwartungswert: E(X) = n * p
  2. Varianz: V(X) = n * p * q
  3. Standardabweichung: σ(X) = √(n * p * q)

Diese Kennzahlen helfen, die Verteilung zu charakterisieren und Vorhersagen zu treffen.

Die grafische Darstellung der Binomialverteilung erfolgt oft in einem Säulendiagramm, das die Wahrscheinlichkeiten für jedes k zeigt. Die kumulierte Binomialverteilung wird als Treppenfunktion dargestellt.

Definition: Der Erwartungswert ist die Zahl, die die Zufallsvariable im Mittel annimmt.

Highlight: Die Eigenschaften der Binomialverteilung ändern sich mit p und n. Je größer p, desto weiter rechts liegt das Maximum der Verteilung. Mit wachsendem n werden die Verteilungen flacher und symmetrischer.

Example: Für p = 0,5 ist die Verteilung symmetrisch, was bedeutet: B(n,p,k) = B(n,p,n-k)

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Bernoulli-Experiment und Binomialverteilung

Das Bernoulli-Experiment ist ein fundamentales Konzept in der Stochastik. Es beschreibt ein Zufallsexperiment mit genau zwei möglichen Ausgängen: Erfolg (E) mit Wahrscheinlichkeit P(E) = p oder Misserfolg (Ē) mit Wahrscheinlichkeit P(Ē) = 1 - p = q.

Die Bernoulli-Kette entsteht, wenn das Experiment mehrfach hintereinander durchgeführt wird, wobei sich die Trefferwahrscheinlichkeit nicht ändert. Die Bernoulli-Formel wird verwendet, um die Wahrscheinlichkeit für eine bestimmte Anzahl von Treffern in einer solchen Kette zu berechnen:

P(X = k) = B(n,p,k) = (n über k) * p^k * q^(n-k)

Hierbei ist X die Zufallsgröße, die die Anzahl der Treffer angibt und als binomialverteilt bezeichnet wird.

Vocabulary: Binomialkoeffizient - Der Term (n über k) wird als Binomialkoeffizient bezeichnet und gibt die Anzahl der Möglichkeiten an, k Elemente aus n Elementen auszuwählen.

Example: Ein praktisches Bernoulli-Experiment Beispiel wäre das mehrmalige Werfen einer Münze, wobei "Kopf" als Erfolg und "Zahl" als Misserfolg definiert wird.

Highlight: Die Bernoulli-Formel erklärt die Wahrscheinlichkeitsverteilung für eine feste Anzahl von Versuchen mit konstanter Erfolgswahrscheinlichkeit.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Maximum und Erwartungswert bei der Binomialverteilung

Das Maximum einer Binomialverteilung hat besondere Eigenschaften:

  1. Wenn E(X) ganzzahlig ist, liegt das Maximum genau an der Stelle k = E(X).
  2. Wenn E(X) nicht ganzzahlig ist, liegt das Maximum bei der nächstgelegenen ganzen Zahl zu E(X).

Highlight: Die Position des Maximums in der Binomialverteilung hängt direkt mit dem Erwartungswert zusammen.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Berechnung von p und n

In manchen Fällen müssen die Parameter p (Trefferwahrscheinlichkeit) oder n (Länge der Bernoulli-Kette) berechnet werden:

  1. Berechnung von p: Wenn die Wahrscheinlichkeit für eine bestimmte Anzahl von Treffern gegeben ist, kann p durch Lösen der entsprechenden Gleichung gefunden werden.

  2. Berechnung von n: Wenn die Wahrscheinlichkeit für mindestens oder höchstens eine bestimmte Anzahl von Treffern gegeben ist, kann n durch schrittweises Erhöhen gefunden werden.

Example: Wenn P(X = 10) = 0,9 bei n = 14 gegeben ist, kann p durch Lösen der Gleichung 0,9 = (14 über 10) * p^10 * (1-p)^4 gefunden werden.

Highlight: Die Berechnung von p und n erfordert oft den Einsatz von Taschenrechnern oder Computerprogrammen, da die Gleichungen komplex sein können.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Sigma-Regel

Die Sigma-Regel ist ein wichtiges Werkzeug in der Stochastik, das Aussagen über die Wahrscheinlichkeit von Abweichungen vom Erwartungswert macht:

  1. 68,3% der Werte liegen im Intervall [μ - σ, μ + σ]
  2. 95,5% der Werte liegen im Intervall [μ - 2σ, μ + 2σ]
  3. 99,7% der Werte liegen im Intervall [μ - 3σ, μ + 3σ]

Dabei ist μ der Erwartungswert und σ die Standardabweichung.

Highlight: Die Sigma-Regel ist besonders nützlich für schnelle Abschätzungen und gilt umso genauer, je größer n ist.

Example: Bei einem Bernoulli-Experiment mit n = 200 und p = 0,9 kann man mit der Sigma-Regel abschätzen, wie viele Treffer mit einer Wahrscheinlichkeit von 95% erzielt werden.

"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =
"D
Bernoulli-Versuch:
→ Bernoulli Experiment:
2 Zufallsexperiment, mit zwei mcgüchen Ausgangen
E = Tiefer fridg
- P(E) =P (Tieffer what)
€ =

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.