Seite 2: Lokale Extremstellen
Diese Seite widmet sich den lokalen Extremstellen einer Funktion. Es werden die Definitionen für lokale Maxima und Minima vorgestellt sowie notwendige Bedingungen für deren Existenz erläutert.
Definition: Ein Funktionswert f(x₀) heißt lokales Maximum, wenn es eine Umgebung U von x₀ gibt, sodass für alle x ∈ U gilt: f(x) ≤ f(x₀). Analog wird ein lokales Minimum definiert.
Highlight: Eine notwendige Bedingung für ein lokales Extremum an einer Stelle x₀ ist, dass die erste Ableitung an dieser Stelle Null ist: f'(x₀) = 0.
Vocabulary: "Differenzierbar" bedeutet, dass sich eine Funktion an einer bestimmten Stelle oder in einem Intervall ableiten lässt.
Die Seite legt den Grundstein für das Berechnen von Extrempunkten und erklärt die Bedingungen für Extrempunkte. Diese Konzepte sind essentiell für das Verständnis von lokalen Maxima und Minima sowie globalen und lokalen Extremstellen.