App öffnen

Fächer

Grenzwerte Aufgaben und Lösungen - Berechnungen, Tabellen und Beispiele

Öffnen

270

1

user profile picture

deinelernzettel

1.3.2021

Mathe

Grenzwerte

Grenzwerte Aufgaben und Lösungen - Berechnungen, Tabellen und Beispiele

Grenzwerte sind ein fundamentales Konzept in der Mathematik, das das Verhalten von Funktionen bei Annäherung an bestimmte Werte oder Unendlichkeit beschreibt. Diese Zusammenfassung erläutert die wichtigsten Aspekte von Grenzwerten, einschließlich Grenzwerte im Unendlichen und Endlichen, Berechnungsmethoden und hebbare Definitionslücken.

  • Grenzwerte (auch Limes genannt) beschreiben das Verhalten von Funktionen bei Annäherung an bestimmte x-Werte oder Unendlichkeit.
  • Es werden Grenzwerte im Unendlichen (x → ±∞) und im Endlichen (x → x₀) unterschieden.
  • Grenzwertberechnung erfolgt durch Termvereinfachung und Anwendung von Grenzwertsätzen.
  • Hebbare Definitionslücken sind Stellen, an denen eine Funktion nicht definiert ist, aber stetig fortgesetzt werden kann.
...

1.3.2021

6914

Beispiel 1
x gegen.
GRENZWERTE
Der Grenzwert wird auch Limes genannt. Dieser beschreibt das
Verhalten von Funktionen, wenn der x-Wert sich e

Öffnen

Grenzwerte im Endlichen und Berechnungsmethoden

Dieser Abschnitt befasst sich mit Grenzwerten im Endlichen und stellt Methoden zur Berechnung von Grenzwerten vor.

Grenzwerte im Endlichen

Bei Grenzwerten im Endlichen wird betrachtet, wie sich eine Funktion verhält, wenn x sich einem bestimmten Wert x₀ nähert. Dabei kann sich die Funktion von links und rechts an die Stelle annähern.

Vocabulary:

  • Linksseitiger Grenzwert: Der Grenzwert, wenn x sich von links an x₀ annähert.
  • Rechtsseitiger Grenzwert: Der Grenzwert, wenn x sich von rechts an x₀ annähert.

Example: Bei einer Funktion mit einer Definitionslücke bei x = 2 könnte der linksseitige Grenzwert 4 sein, wenn x < 2 und gegen 2 läuft, und der rechtsseitige Grenzwert ebenfalls 4, wenn x > 2 und gegen 2 läuft.

Grenzwertberechnung

Die Berechnung von Grenzwerten erfolgt oft durch Termvereinfachung. Dabei werden verschiedene Techniken angewandt:

  1. Ausklammern
  2. Kürzen
  3. Anwendung binomischer Formeln
  4. Nutzung von Grenzwertsätzen

Highlight: Die Grenzwertsätze sind besonders wichtig für die Berechnung komplexerer Grenzwerte.

Grenzwertsätze

Die Grenzwertsätze ermöglichen es, Grenzwerte von Summen, Differenzen, Produkten und Quotienten zu berechnen:

  1. lim (f(x) + g(x)) = lim f(x) + lim g(x)
  2. lim (f(x) - g(x)) = lim f(x) - lim g(x)
  3. lim (f(x) · g(x)) = lim f(x) · lim g(x)
  4. lim (f(x) / g(x)) = lim f(x) / lim g(x), falls lim g(x) ≠ 0

Diese Sätze gelten sowohl für Grenzwerte im Endlichen als auch im Unendlichen.

Example: Berechnung des Grenzwerts von f(x) = 4x - 1 für x → ∞: lim (4x - 1) = lim 4x - lim 1 = 4 · lim x - 1 = 4 · ∞ - 1 = ∞

Die Beherrschung dieser Berechnungsmethoden ist essentiell für das Lösen von Grenzwert Aufgaben mit Lösungen und die Anwendung in komplexeren mathematischen Problemen.

Beispiel 1
x gegen.
GRENZWERTE
Der Grenzwert wird auch Limes genannt. Dieser beschreibt das
Verhalten von Funktionen, wenn der x-Wert sich e

Öffnen

Hebbare Definitionslücken und Polstellen

Dieser Abschnitt behandelt das wichtige Konzept der hebbaren Definitionslücken und unterscheidet diese von Polstellen.

Hebbare Definitionslücken

Definition: Eine hebbare Definitionslücke liegt vor, wenn eine Funktion an einer Stelle nicht definiert ist, aber stetig fortgesetzt werden kann.

Hebbare Definitionslücken sind ein wichtiges Konzept in der Analysis und treten häufig bei rationalen Funktionen auf.

Example: Die Funktion f(x) = (x² - 1) / (x - 2) hat eine hebbare Definitionslücke bei x = 2.

Berechnung hebbarer Definitionslücken

Um hebbare Definitionslücken zu identifizieren und zu berechnen, folgt man einem systematischen Vorgehen:

  1. Nullstellen des Nenners berechnen
  2. Nullstellen des Zählers berechnen
  3. Unterscheidung zwischen Polstelle und hebbarer Definitionslücke
  4. Faktorisieren von Nenner und Zähler
  5. Kürzen des Bruches
  6. Abschließende Beurteilung

Highlight: Eine Definitionslücke, die nach dem Kürzen keine Nullstelle des Nennerpolynoms mehr ist, ist eine hebbare Definitionslücke.

Polstellen vs. Hebbare Definitionslücken

Definition: Eine Polstelle ist eine Stelle, in deren Nähe die Funktionswerte gegen Unendlich laufen.

Der Unterschied zwischen Polstellen und hebbaren Definitionslücken ist entscheidend:

  • Bei einer Polstelle ist die Nullstelle nur im Nenner vorhanden.
  • Bei einer hebbaren Definitionslücke tritt die Nullstelle sowohl im Zähler als auch im Nenner auf und lässt sich durch Kürzen eliminieren.

Example: In der Funktion f(x) = (x² - 1) / (x - 2):

  1. Nullstelle des Nenners: x = 2
  2. Nullstellen des Zählers: x = 1 und x = -1
  3. Nach dem Kürzen: f(x) = x + 1
  4. Die Definitionslücke bei x = 2 ist hebbar, da sie nach dem Kürzen verschwindet.

Das Verständnis von hebbaren Definitionslücken und Polstellen ist essentiell für die Analyse von Funktionen und die Lösung von Grenzwert Aufgaben. Es hilft bei der Identifikation von Unstetigkeitsstellen und ermöglicht eine tiefere Einsicht in das Verhalten von Funktionen.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

20 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 17 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

 

Mathe

6.914

1. März 2021

3 Seiten

Grenzwerte Aufgaben und Lösungen - Berechnungen, Tabellen und Beispiele

Grenzwerte sind ein fundamentales Konzept in der Mathematik, das das Verhalten von Funktionen bei Annäherung an bestimmte Werte oder Unendlichkeit beschreibt. Diese Zusammenfassung erläutert die wichtigsten Aspekte von Grenzwerten, einschließlich Grenzwerte im Unendlichen und Endlichen, Berechnungsmethoden und hebbare Definitionslücken.

  • Grenzwerte... Mehr anzeigen
Beispiel 1
x gegen.
GRENZWERTE
Der Grenzwert wird auch Limes genannt. Dieser beschreibt das
Verhalten von Funktionen, wenn der x-Wert sich e

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Grenzwerte im Endlichen und Berechnungsmethoden

Dieser Abschnitt befasst sich mit Grenzwerten im Endlichen und stellt Methoden zur Berechnung von Grenzwerten vor.

Grenzwerte im Endlichen

Bei Grenzwerten im Endlichen wird betrachtet, wie sich eine Funktion verhält, wenn x sich einem bestimmten Wert x₀ nähert. Dabei kann sich die Funktion von links und rechts an die Stelle annähern.

Vocabulary:

  • Linksseitiger Grenzwert: Der Grenzwert, wenn x sich von links an x₀ annähert.
  • Rechtsseitiger Grenzwert: Der Grenzwert, wenn x sich von rechts an x₀ annähert.

Example: Bei einer Funktion mit einer Definitionslücke bei x = 2 könnte der linksseitige Grenzwert 4 sein, wenn x < 2 und gegen 2 läuft, und der rechtsseitige Grenzwert ebenfalls 4, wenn x > 2 und gegen 2 läuft.

Grenzwertberechnung

Die Berechnung von Grenzwerten erfolgt oft durch Termvereinfachung. Dabei werden verschiedene Techniken angewandt:

  1. Ausklammern
  2. Kürzen
  3. Anwendung binomischer Formeln
  4. Nutzung von Grenzwertsätzen

Highlight: Die Grenzwertsätze sind besonders wichtig für die Berechnung komplexerer Grenzwerte.

Grenzwertsätze

Die Grenzwertsätze ermöglichen es, Grenzwerte von Summen, Differenzen, Produkten und Quotienten zu berechnen:

  1. lim (f(x) + g(x)) = lim f(x) + lim g(x)
  2. lim (f(x) - g(x)) = lim f(x) - lim g(x)
  3. lim (f(x) · g(x)) = lim f(x) · lim g(x)
  4. lim (f(x) / g(x)) = lim f(x) / lim g(x), falls lim g(x) ≠ 0

Diese Sätze gelten sowohl für Grenzwerte im Endlichen als auch im Unendlichen.

Example: Berechnung des Grenzwerts von f(x) = 4x - 1 für x → ∞: lim (4x - 1) = lim 4x - lim 1 = 4 · lim x - 1 = 4 · ∞ - 1 = ∞

Die Beherrschung dieser Berechnungsmethoden ist essentiell für das Lösen von Grenzwert Aufgaben mit Lösungen und die Anwendung in komplexeren mathematischen Problemen.

Beispiel 1
x gegen.
GRENZWERTE
Der Grenzwert wird auch Limes genannt. Dieser beschreibt das
Verhalten von Funktionen, wenn der x-Wert sich e

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Hebbare Definitionslücken und Polstellen

Dieser Abschnitt behandelt das wichtige Konzept der hebbaren Definitionslücken und unterscheidet diese von Polstellen.

Hebbare Definitionslücken

Definition: Eine hebbare Definitionslücke liegt vor, wenn eine Funktion an einer Stelle nicht definiert ist, aber stetig fortgesetzt werden kann.

Hebbare Definitionslücken sind ein wichtiges Konzept in der Analysis und treten häufig bei rationalen Funktionen auf.

Example: Die Funktion f(x) = (x² - 1) / (x - 2) hat eine hebbare Definitionslücke bei x = 2.

Berechnung hebbarer Definitionslücken

Um hebbare Definitionslücken zu identifizieren und zu berechnen, folgt man einem systematischen Vorgehen:

  1. Nullstellen des Nenners berechnen
  2. Nullstellen des Zählers berechnen
  3. Unterscheidung zwischen Polstelle und hebbarer Definitionslücke
  4. Faktorisieren von Nenner und Zähler
  5. Kürzen des Bruches
  6. Abschließende Beurteilung

Highlight: Eine Definitionslücke, die nach dem Kürzen keine Nullstelle des Nennerpolynoms mehr ist, ist eine hebbare Definitionslücke.

Polstellen vs. Hebbare Definitionslücken

Definition: Eine Polstelle ist eine Stelle, in deren Nähe die Funktionswerte gegen Unendlich laufen.

Der Unterschied zwischen Polstellen und hebbaren Definitionslücken ist entscheidend:

  • Bei einer Polstelle ist die Nullstelle nur im Nenner vorhanden.
  • Bei einer hebbaren Definitionslücke tritt die Nullstelle sowohl im Zähler als auch im Nenner auf und lässt sich durch Kürzen eliminieren.

Example: In der Funktion f(x) = (x² - 1) / (x - 2):

  1. Nullstelle des Nenners: x = 2
  2. Nullstellen des Zählers: x = 1 und x = -1
  3. Nach dem Kürzen: f(x) = x + 1
  4. Die Definitionslücke bei x = 2 ist hebbar, da sie nach dem Kürzen verschwindet.

Das Verständnis von hebbaren Definitionslücken und Polstellen ist essentiell für die Analyse von Funktionen und die Lösung von Grenzwert Aufgaben. Es hilft bei der Identifikation von Unstetigkeitsstellen und ermöglicht eine tiefere Einsicht in das Verhalten von Funktionen.

Beispiel 1
x gegen.
GRENZWERTE
Der Grenzwert wird auch Limes genannt. Dieser beschreibt das
Verhalten von Funktionen, wenn der x-Wert sich e

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Grundlagen der Grenzwerte

In diesem Abschnitt werden die grundlegenden Konzepte der Grenzwerte erläutert, einschließlich der Definition und Beispiele für Grenzwerte im Unendlichen.

Definition: Der Grenzwert, auch Limes genannt, beschreibt das Verhalten von Funktionen, wenn der x-Wert sich einem bestimmten Wert annähert oder ins Unendliche geht.

Es werden zwei Hauptarten von Grenzwerten vorgestellt:

  1. Grenzwerte im Unendlichen: Hier wird betrachtet, wie sich eine Funktion verhält, wenn x gegen Unendlich läuft. Dies kann sowohl für positive als auch negative Unendlichkeit gelten.

  2. Grenzwerte im Endlichen: Diese beschreiben das Verhalten einer Funktion, wenn x sich einem bestimmten endlichen Wert nähert.

Beispiel: Für die Funktion f(x) = x² gilt:

  • lim f(x) = ∞ (x → ∞)
  • lim f(x) = ∞ (x → -∞)

Highlight: Bei Grenzwerten im Unendlichen ist es wichtig zu beachten, dass das Verhalten der Funktion für x → +∞ und x → -∞ unterschiedlich sein kann.

Die Notation für Grenzwerte wird eingeführt:

  • A = lim f(x) (x → a) für Grenzwerte im Endlichen
  • A = lim f(x) (x → ∞) und A = lim f(x) (x → -∞) für Grenzwerte im Unendlichen

Diese Grundlagen bilden die Basis für das Verständnis und die Berechnung von Grenzwerten, die in vielen Bereichen der Mathematik und ihrer Anwendungen von großer Bedeutung sind.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Schüler:innen lieben uns — und du wirst es auch.

4.9/5

App Store

4.8/5

Google Play

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user