Integralrechnung und Exponentialfunktionen sind zentrale Themen der höheren Mathematik. Diese Zusammenfassung behandelt wichtige Konzepte wie Integralrechnung unterhalb der x-Achse, Volumen durch Rotationskörper berechnen und die Kettenregel bei natürlichen Exponentialfunktionen.
- Integralrechnung wird für Flächenberechnungen über und unter der x-Achse sowie zwischen Funktionsgraphen verwendet.
- Rotationsvolumen kann durch Integration berechnet werden.
- Natürliche Exponentialfunktionen haben besondere Eigenschaften bei Ableitung und Integration.
- Die Kettenregel und Produktregel sind wichtige Werkzeuge für komplexe Ableitungen.