Fächer

Fächer

Mehr

Stammfunktion Rechner und Übungen: Lerne Spaß mit Mathe!

Öffnen

Stammfunktion Rechner und Übungen: Lerne Spaß mit Mathe!
user profile picture

Lilly

@lilly.sche

·

85 Follower

Follow

The document provides an in-depth explanation of antiderivatives (Stammfunktionen) in calculus, covering their definition, rules, and applications. It includes examples of finding antiderivatives for various functions, including trigonometric and polynomial functions. The material also touches on definite integrals and their relationship to antiderivatives.

Stammfunktion Rechner (antiderivative calculator) concepts are introduced
Stammfunktion Regeln (antiderivative rules) are explained with examples
Stammfunktion bilden Beispiele (forming antiderivative examples) are provided
Bestimmtes Integral berechnen (calculating definite integrals) is briefly covered

15.3.2021

6775

Stamrifunktion
zu f(x), wenn gilt,
F(x) ist Stammfunktion
F'(x) = f(x)
Abgleitet
alla
F(x) = ²/² x² + x
f(x)
beck)
Eine Stamfunktion
F(x) is

Öffnen

Advanced Integration Techniques

This page delves into more complex integration techniques, focusing on functions involving roots, higher powers, and compound expressions. It provides examples of Stammfunktion bilden Übungen (antiderivative formation exercises) with step-by-step solutions.

The document starts with examples of integrating functions containing square roots:

Example: For f(x) = √x, the antiderivative is F(x) = 2/3x^(3/2).

It then progresses to more complex functions, including those with higher powers and negative exponents:

Example: For f(x) = x^(-1/2), the antiderivative is F(x) = 2√x.

The page also covers the integration of functions involving parentheses and multiple terms:

Example: For f(x) = 2x(-x² + 6x + 5), the antiderivative is F(x) = -1/2x⁴ + 4x³ + 5x² + c.

The document includes examples of Bestimmtes Integral berechnen (calculating definite integrals), demonstrating the fundamental theorem of calculus:

Highlight: The definite integral is calculated by evaluating the antiderivative at the upper and lower limits and subtracting.

Several practice problems are provided, allowing students to apply the Stammfunktion Regeln (antiderivative rules) they've learned. These exercises cover a range of function types, from simple polynomials to more complex expressions involving roots and trigonometric functions.

Vocabulary: Limes (limit) is used in some of the more advanced integration problems.

The page concludes with some notes on integration techniques for specific types of functions, reinforcing the importance of recognizing patterns and applying the appropriate Stammfunktion Regeln.

Stamrifunktion
zu f(x), wenn gilt,
F(x) ist Stammfunktion
F'(x) = f(x)
Abgleitet
alla
F(x) = ²/² x² + x
f(x)
beck)
Eine Stamfunktion
F(x) is

Öffnen

Antiderivatives and Integration

This page introduces the concept of antiderivatives (Stammfunktionen) and their relationship to derivatives. An antiderivative F(x) of a function f(x) is defined as a function whose derivative is f(x). The page provides several examples to illustrate this concept.

Definition: An antiderivative F(x) of a function f(x) satisfies the condition F'(x) = f(x).

The document explains that there are multiple antiderivatives for a given function, differing by a constant. It presents the general form of antiderivatives as F(x) = x³ + 3x² - 3x + c, where c is an arbitrary constant.

Example: For f(x) = 3x + 1, the antiderivative is F(x) = 3/2x² + x + c.

The page also introduces the concept of a specific antiderivative, which is determined by a given point through which the antiderivative must pass. An example is provided to illustrate this process.

Highlight: To find a specific antiderivative, you need to solve for the constant c using a given point.

The document includes a table of common antiderivatives, including trigonometric functions like sin(x) and cos(x). It emphasizes the importance of using radian measure for trigonometric functions.

Vocabulary: Bogenmaß (radian measure) is used for trigonometric functions in integration.

Several more examples of finding antiderivatives are provided, demonstrating the process for polynomial functions of various degrees.

Example: For f(x) = 4x² + 6x - 3, the antiderivative is F(x) = 4/3x³ + 3x² - 3x + c.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Stammfunktion Rechner und Übungen: Lerne Spaß mit Mathe!

user profile picture

Lilly

@lilly.sche

·

85 Follower

Follow

The document provides an in-depth explanation of antiderivatives (Stammfunktionen) in calculus, covering their definition, rules, and applications. It includes examples of finding antiderivatives for various functions, including trigonometric and polynomial functions. The material also touches on definite integrals and their relationship to antiderivatives.

Stammfunktion Rechner (antiderivative calculator) concepts are introduced
Stammfunktion Regeln (antiderivative rules) are explained with examples
Stammfunktion bilden Beispiele (forming antiderivative examples) are provided
Bestimmtes Integral berechnen (calculating definite integrals) is briefly covered

15.3.2021

6775

 

11/12

 

Mathe

152

Stamrifunktion
zu f(x), wenn gilt,
F(x) ist Stammfunktion
F'(x) = f(x)
Abgleitet
alla
F(x) = ²/² x² + x
f(x)
beck)
Eine Stamfunktion
F(x) is

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Advanced Integration Techniques

This page delves into more complex integration techniques, focusing on functions involving roots, higher powers, and compound expressions. It provides examples of Stammfunktion bilden Übungen (antiderivative formation exercises) with step-by-step solutions.

The document starts with examples of integrating functions containing square roots:

Example: For f(x) = √x, the antiderivative is F(x) = 2/3x^(3/2).

It then progresses to more complex functions, including those with higher powers and negative exponents:

Example: For f(x) = x^(-1/2), the antiderivative is F(x) = 2√x.

The page also covers the integration of functions involving parentheses and multiple terms:

Example: For f(x) = 2x(-x² + 6x + 5), the antiderivative is F(x) = -1/2x⁴ + 4x³ + 5x² + c.

The document includes examples of Bestimmtes Integral berechnen (calculating definite integrals), demonstrating the fundamental theorem of calculus:

Highlight: The definite integral is calculated by evaluating the antiderivative at the upper and lower limits and subtracting.

Several practice problems are provided, allowing students to apply the Stammfunktion Regeln (antiderivative rules) they've learned. These exercises cover a range of function types, from simple polynomials to more complex expressions involving roots and trigonometric functions.

Vocabulary: Limes (limit) is used in some of the more advanced integration problems.

The page concludes with some notes on integration techniques for specific types of functions, reinforcing the importance of recognizing patterns and applying the appropriate Stammfunktion Regeln.

Stamrifunktion
zu f(x), wenn gilt,
F(x) ist Stammfunktion
F'(x) = f(x)
Abgleitet
alla
F(x) = ²/² x² + x
f(x)
beck)
Eine Stamfunktion
F(x) is

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Antiderivatives and Integration

This page introduces the concept of antiderivatives (Stammfunktionen) and their relationship to derivatives. An antiderivative F(x) of a function f(x) is defined as a function whose derivative is f(x). The page provides several examples to illustrate this concept.

Definition: An antiderivative F(x) of a function f(x) satisfies the condition F'(x) = f(x).

The document explains that there are multiple antiderivatives for a given function, differing by a constant. It presents the general form of antiderivatives as F(x) = x³ + 3x² - 3x + c, where c is an arbitrary constant.

Example: For f(x) = 3x + 1, the antiderivative is F(x) = 3/2x² + x + c.

The page also introduces the concept of a specific antiderivative, which is determined by a given point through which the antiderivative must pass. An example is provided to illustrate this process.

Highlight: To find a specific antiderivative, you need to solve for the constant c using a given point.

The document includes a table of common antiderivatives, including trigonometric functions like sin(x) and cos(x). It emphasizes the importance of using radian measure for trigonometric functions.

Vocabulary: Bogenmaß (radian measure) is used for trigonometric functions in integration.

Several more examples of finding antiderivatives are provided, demonstrating the process for polynomial functions of various degrees.

Example: For f(x) = 4x² + 6x - 3, the antiderivative is F(x) = 4/3x³ + 3x² - 3x + c.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.