App öffnen

Fächer

Bedingte Wahrscheinlichkeit und Stochastische Unabhängigkeit einfach erklärt für Kinder

Öffnen

95

1

user profile picture

Joslin

8.5.2023

Mathe

Stochastik

Bedingte Wahrscheinlichkeit und Stochastische Unabhängigkeit einfach erklärt für Kinder

Die bedingte Wahrscheinlichkeit in der Stochastik verstehen ist ein grundlegendes Konzept der Wahrscheinlichkeitsrechnung. Es beschreibt die Wahrscheinlichkeit eines Ereignisses unter der Bedingung, dass ein anderes Ereignis bereits eingetreten ist.

  • Bedingte Wahrscheinlichkeit wird mit P(A|B) dargestellt
  • Verschiedene Darstellungsmöglichkeiten: Baumdiagramm und Vierfeldertafel
  • Stochastische Unabhängigkeit tritt auf, wenn das Eintreten eines Ereignisses die Wahrscheinlichkeit des anderen nicht beeinflusst
  • Binomialverteilung beschreibt die Wahrscheinlichkeit bei wiederholten unabhängigen Versuchen
  • Erwartungswert und Standardabweichung sind wichtige Kenngrößen in der Wahrscheinlichkeitsrechnung
...

8.5.2023

5050

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Öffnen

Stochastische Unabhängigkeit und Bernoulli-Experimente

Die stochastische Unabhängigkeit ist ein wichtiges Konzept in der Wahrscheinlichkeitstheorie. Zwei Ereignisse A und B sind stochastisch unabhängig, wenn die Wahrscheinlichkeit des Eintretens von Ereignis B nicht davon abhängt, ob A eingetreten ist oder nicht.

Definition: Stochastische Unabhängigkeit liegt vor, wenn P_BAA = PAA und P_ABB = PBB.

Für stochastisch unabhängige Ereignisse gilt außerdem:

PABA∩B = PAA · PBB

Example: Beim Werfen zweier Würfel sind die Ereignisse "Erster Würfel zeigt eine 4" und "Zweiter Würfel zeigt eine 2" stochastisch unabhängig.

Ein Bernoulli-Experiment ist ein Zufallsexperiment mit nur zwei möglichen Ausgängen: "Treffer" und "kein Treffer". Die Bernoulli Formel beschreibt die Wahrscheinlichkeit für eine bestimmte Anzahl von Treffern bei mehrfacher Wiederholung eines Bernoulli-Experiments:

PX=kX = k = nkn k · p^k · 1p1-p^nkn-k

Vocabulary: Der Binomialkoeffizient nkn k gibt die Anzahl der möglichen Wege an, k Treffer aus n Versuchen zu erhalten.

Die Bedingungen für ein Bernoulli-Experiment sind:

  1. Zwei mögliche Ergebnisse TrefferundNichtTrefferTreffer und Nicht-Treffer
  2. Konstante Trefferwahrscheinlichkeit p
  3. Stochastische Unabhängigkeit der Versuche
Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Öffnen

Zufallsgrößen und Erwartungswert

Eine Zufallsgröße X ist eine Zuordnung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet. Die Wahrscheinlichkeitsverteilung einer Zufallsgröße gibt an, mit welcher Wahrscheinlichkeit die Zufallsgröße bestimmte Werte annimmt.

Der Erwartungswert EXX einer Zufallsgröße X ist der Mittelwert der Ergebnisse bei mehreren Durchführungen des Experiments. Er berechnet sich wie folgt:

EXX = x₁ · PX=x1X=x₁ + x₂ · PX=x2X=x₂ + ... + xn · PX=xnX=xn

Highlight: Der Erwartungswert gibt den langfristig zu erwartenden Durchschnitt der Zufallsgröße an.

Example: Bei einem Glücksspiel mit der Wahrscheinlichkeitsverteilung PX=1X=1 = 0,3, PX=2X=2 = 0,3, PX=3X=3 = 0,2, PX=4X=4 = 0,2 beträgt der Erwartungswert EXX = 2,3.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Öffnen

Standardabweichung und Varianz

Die Standardabweichung und die Varianz sind Maße für die Streuung einer Verteilung um ihren Erwartungswert.

Die Varianz VXX einer Zufallsgröße X berechnet sich wie folgt:

VXX = x1μx₁ - μ² · PX=x1X=x₁ + x2μx₂ - μ² · PX=x2X=x₂ + ... + xnμxn - μ² · PX=xnX=xn

Dabei ist μ = EXX der Erwartungswert von X.

Die Standardabweichung σXX ist die Wurzel aus der Varianz:

σXX = √VXX

Definition: Die Standardabweichung ist ein Maß für die durchschnittliche Abweichung vom Mittelwert.

Beide Kenngrößen, Varianz und Standardabweichung, sind wichtige Instrumente zur Beschreibung der Streuung einer Wahrscheinlichkeitsverteilung und finden in vielen Bereichen der Statistik und Wahrscheinlichkeitstheorie Anwendung.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Öffnen

Die fünfte Seite führt das Konzept der Zufallsgröße und des Erwartungswerts ein. Eine Zufallsgröße X ordnet jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zu.

Definition: Die Wahrscheinlichkeitsverteilung einer Zufallsgröße X ordnet jedem möglichen Wert x die Wahrscheinlichkeit PX=xX=x zu.

Der Erwartungswert EXX einer Zufallsgröße wird als gewichteter Mittelwert der möglichen Werte definiert:

Formel: EXX = x₁ · PX=x1X=x₁ + x₂ · PX=x2X=x₂ + ... + xn · PX=xnX=xn

Highlight: Der Erwartungswert gibt den langfristig zu erwartenden Durchschnitt der Zufallsgröße an.

Ein Beispiel für ein Glücksspiel wird präsentiert, um zu zeigen, wie man den Erwartungswert berechnet und interpretiert. Es wird erklärt, dass ein Glücksspiel als fair gilt, wenn der Einsatz genau dem Erwartungswert entspricht.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Öffnen

Die sechste Seite behandelt die Konzepte der Varianz und Standardabweichung. Diese Kenngrößen messen die Streuung einer Verteilung um ihren Erwartungswert.

Definition: Die Varianz VXX einer Zufallsgröße X ist die durchschnittliche quadratische Abweichung vom Erwartungswert μ = EXX.

Die Formel für die Varianz wird präsentiert:

Formel: VXX = x1μx₁ - μ² · PX=x1X=x₁ + x2μx₂ - μ² · PX=x2X=x₂ + ... + xnμxn - μ² · PX=xnX=xn

Highlight: Die Standardabweichung σXX ist die Wurzel aus der Varianz: σXX = √VXX

Es wird betont, dass sowohl Varianz als auch Standardabweichung ein Maß für die Streuung der Verteilung um ihren Erwartungswert sind. Diese Kenngrößen sind besonders wichtig, um die Zuverlässigkeit von Vorhersagen und die Stabilität von Zufallsprozessen zu beurteilen.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

21 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 17 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

 

Mathe

5.050

8. Mai 2023

6 Seiten

Bedingte Wahrscheinlichkeit und Stochastische Unabhängigkeit einfach erklärt für Kinder

user profile picture

Joslin

@joslin_nle

Die bedingte Wahrscheinlichkeit in der Stochastik verstehen ist ein grundlegendes Konzept der Wahrscheinlichkeitsrechnung. Es beschreibt die Wahrscheinlichkeit eines Ereignisses unter der Bedingung, dass ein anderes Ereignis bereits eingetreten ist.

  • Bedingte Wahrscheinlichkeit wird mit P(A|B) dargestellt
  • Verschiedene Darstellungsmöglichkeiten: Baumdiagramm und Vierfeldertafel... Mehr anzeigen

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Stochastische Unabhängigkeit und Bernoulli-Experimente

Die stochastische Unabhängigkeit ist ein wichtiges Konzept in der Wahrscheinlichkeitstheorie. Zwei Ereignisse A und B sind stochastisch unabhängig, wenn die Wahrscheinlichkeit des Eintretens von Ereignis B nicht davon abhängt, ob A eingetreten ist oder nicht.

Definition: Stochastische Unabhängigkeit liegt vor, wenn P_BAA = PAA und P_ABB = PBB.

Für stochastisch unabhängige Ereignisse gilt außerdem:

PABA∩B = PAA · PBB

Example: Beim Werfen zweier Würfel sind die Ereignisse "Erster Würfel zeigt eine 4" und "Zweiter Würfel zeigt eine 2" stochastisch unabhängig.

Ein Bernoulli-Experiment ist ein Zufallsexperiment mit nur zwei möglichen Ausgängen: "Treffer" und "kein Treffer". Die Bernoulli Formel beschreibt die Wahrscheinlichkeit für eine bestimmte Anzahl von Treffern bei mehrfacher Wiederholung eines Bernoulli-Experiments:

PX=kX = k = nkn k · p^k · 1p1-p^nkn-k

Vocabulary: Der Binomialkoeffizient nkn k gibt die Anzahl der möglichen Wege an, k Treffer aus n Versuchen zu erhalten.

Die Bedingungen für ein Bernoulli-Experiment sind:

  1. Zwei mögliche Ergebnisse TrefferundNichtTrefferTreffer und Nicht-Treffer
  2. Konstante Trefferwahrscheinlichkeit p
  3. Stochastische Unabhängigkeit der Versuche
Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Zufallsgrößen und Erwartungswert

Eine Zufallsgröße X ist eine Zuordnung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet. Die Wahrscheinlichkeitsverteilung einer Zufallsgröße gibt an, mit welcher Wahrscheinlichkeit die Zufallsgröße bestimmte Werte annimmt.

Der Erwartungswert EXX einer Zufallsgröße X ist der Mittelwert der Ergebnisse bei mehreren Durchführungen des Experiments. Er berechnet sich wie folgt:

EXX = x₁ · PX=x1X=x₁ + x₂ · PX=x2X=x₂ + ... + xn · PX=xnX=xn

Highlight: Der Erwartungswert gibt den langfristig zu erwartenden Durchschnitt der Zufallsgröße an.

Example: Bei einem Glücksspiel mit der Wahrscheinlichkeitsverteilung PX=1X=1 = 0,3, PX=2X=2 = 0,3, PX=3X=3 = 0,2, PX=4X=4 = 0,2 beträgt der Erwartungswert EXX = 2,3.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Standardabweichung und Varianz

Die Standardabweichung und die Varianz sind Maße für die Streuung einer Verteilung um ihren Erwartungswert.

Die Varianz VXX einer Zufallsgröße X berechnet sich wie folgt:

VXX = x1μx₁ - μ² · PX=x1X=x₁ + x2μx₂ - μ² · PX=x2X=x₂ + ... + xnμxn - μ² · PX=xnX=xn

Dabei ist μ = EXX der Erwartungswert von X.

Die Standardabweichung σXX ist die Wurzel aus der Varianz:

σXX = √VXX

Definition: Die Standardabweichung ist ein Maß für die durchschnittliche Abweichung vom Mittelwert.

Beide Kenngrößen, Varianz und Standardabweichung, sind wichtige Instrumente zur Beschreibung der Streuung einer Wahrscheinlichkeitsverteilung und finden in vielen Bereichen der Statistik und Wahrscheinlichkeitstheorie Anwendung.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Die fünfte Seite führt das Konzept der Zufallsgröße und des Erwartungswerts ein. Eine Zufallsgröße X ordnet jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zu.

Definition: Die Wahrscheinlichkeitsverteilung einer Zufallsgröße X ordnet jedem möglichen Wert x die Wahrscheinlichkeit PX=xX=x zu.

Der Erwartungswert EXX einer Zufallsgröße wird als gewichteter Mittelwert der möglichen Werte definiert:

Formel: EXX = x₁ · PX=x1X=x₁ + x₂ · PX=x2X=x₂ + ... + xn · PX=xnX=xn

Highlight: Der Erwartungswert gibt den langfristig zu erwartenden Durchschnitt der Zufallsgröße an.

Ein Beispiel für ein Glücksspiel wird präsentiert, um zu zeigen, wie man den Erwartungswert berechnet und interpretiert. Es wird erklärt, dass ein Glücksspiel als fair gilt, wenn der Einsatz genau dem Erwartungswert entspricht.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Die sechste Seite behandelt die Konzepte der Varianz und Standardabweichung. Diese Kenngrößen messen die Streuung einer Verteilung um ihren Erwartungswert.

Definition: Die Varianz VXX einer Zufallsgröße X ist die durchschnittliche quadratische Abweichung vom Erwartungswert μ = EXX.

Die Formel für die Varianz wird präsentiert:

Formel: VXX = x1μx₁ - μ² · PX=x1X=x₁ + x2μx₂ - μ² · PX=x2X=x₂ + ... + xnμxn - μ² · PX=xnX=xn

Highlight: Die Standardabweichung σXX ist die Wurzel aus der Varianz: σXX = √VXX

Es wird betont, dass sowohl Varianz als auch Standardabweichung ein Maß für die Streuung der Verteilung um ihren Erwartungswert sind. Diese Kenngrößen sind besonders wichtig, um die Zuverlässigkeit von Vorhersagen und die Stabilität von Zufallsprozessen zu beurteilen.

Bedingte wahrscheinlichkeit
↳ wahrscheinlichkeit, dass ein Ereignis A eintritt unter der Bedingung,
dass ein anderes Ergebnis B eingetreten

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Bedingte Wahrscheinlichkeit und Stochastische Unabhängigkeit

Die bedingte Wahrscheinlichkeit ist ein fundamentales Konzept in der Stochastik. Sie beschreibt die Wahrscheinlichkeit, dass ein Ereignis A eintritt, unter der Bedingung, dass ein anderes Ereignis B bereits eingetreten ist.

Die Bedingte Wahrscheinlichkeit Formel lautet:

PABA|B = PABA∩B / PBB

Diese Formel kann auch als P_BAA geschrieben werden.

Definition: Die bedingte Wahrscheinlichkeit PABA|B ist die Wahrscheinlichkeit, dass Ereignis A eintritt, wenn Ereignis B bereits eingetreten ist.

Es gibt verschiedene Darstellungsmöglichkeiten für bedingte Wahrscheinlichkeiten:

  1. Baumdiagramm
  2. Vierfeldertafel

Highlight: Baumdiagramme und Vierfeldertafeln sind nützliche Werkzeuge zur Visualisierung und Berechnung bedingter Wahrscheinlichkeiten.

In einem Baumdiagramm werden die Wahrscheinlichkeiten entlang der Äste multipliziert, während in einer Vierfeldertafel die Wahrscheinlichkeiten in den entsprechenden Feldern abgelesen werden können.

Example: In einer Urne befinden sich 5 rote und 4 orangene Kugeln. Die Wahrscheinlichkeit, dass die zweite gezogene Kugel rot ist, wenn die erste Kugel orange war, beträgt P_BAA = 5/8 = 62,5%.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Schüler:innen lieben uns — und du wirst es auch.

4.9/5

App Store

4.8/5

Google Play

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user