Der Strahlensatz: Berechnung von Streckenlängen
Der Strahlensatz ist ein fundamentales Konzept der Geometrie, das uns hilft, unbekannte Streckenlängen in ähnlichen Dreiecken zu berechnen. Wenn zwei Strahlen von einem Punkt ausgehen und von Parallelen geschnitten werden, entstehen ähnliche Dreiecke mit proportionalen Seitenlängen.
Definition: Der Strahlensatz besagt, dass parallele Geraden, die zwei Strahlen schneiden, proportionale Abschnitte auf diesen Strahlen erzeugen.
Bei der praktischen Anwendung des Strahlensatzes arbeiten wir mit Verhältnisgleichungen. Wenn wir beispielsweise die Längen a, b und c kennen, können wir die unbekannte Länge x durch Aufstellen einer Proportion berechnen. Die Formel lautet dabei: a : b = c : x.
Beispiel: Gegeben sind zwei Strahlen mit den Abschnitten a = 3,5 cm und b = 7,2 cm. Eine Parallele schneidet diese Strahlen so, dass c = 5,6 cm ist. Die unbekannte Länge x lässt sich durch Einsetzen in die Verhältnisgleichung berechnen: 3,5 : 7,2 = 5,6 : x. Daraus folgt x = 11,52 cm.