Fächer

Fächer

Mehr

Einfach erklärt: Ableitung von Sinus und Cosinus für Kids

Öffnen

Einfach erklärt: Ableitung von Sinus und Cosinus für Kids
user profile picture

lilly

@lilly

·

888 Follower

Follow

Die Lektion behandelt trigonometrische Funktionen mit Fokus auf Sinus- und Cosinusfunktionen, deren Eigenschaften, Ableitungen und Parameterbestimmung. Wichtige Konzepte wie Amplitude, Wellenlänge und Verschiebungen werden erläutert. Ableitungsregeln, einschließlich der Kettenregel, werden für verschiedene Funktionstypen vorgestellt.

Sinus- und Cosinusfunktionen werden detailliert erklärt, einschließlich ihrer Graphen und charakteristischen Punkte.
• Die Ableitung trigonometrischer Funktionen wird behandelt, mit besonderem Augenmerk auf Ableitung Sinus, Ableitung Cosinus und deren Variationen.
• Parameterbestimmung und Verschiebungen der Funktionsgraphen werden ausführlich besprochen.
• Verschiedene Ableitungsregeln wie Potenz-, Faktor- und Summenregel werden vorgestellt und angewendet.
• Die Umrechnung zwischen Grad- und Bogenmaß wird erklärt, was für das Verständnis trigonometrischer Funktionen wesentlich ist.

29.1.2021

6497

MATHE
1. KLAUSUR
TRIGONOMETRISCHE FONITIONEN:
SINUS & COSINUSFUNKTION
G TT
g(x)=sin(x-)
F
a= Yn=Y+
3TT
f(x)= a · Sin (6x + c) +d²
andert AMP

Öffnen

Trigonometrische Funktionen: Sinus & Cosinusfunktion

Diese Seite bietet eine umfassende Übersicht über trigonometrische Funktionen, insbesondere Sinus- und Cosinusfunktionen. Sie erklärt die grundlegenden Eigenschaften dieser Funktionen, ihre Graphen und wie verschiedene Parameter die Form und Position der Graphen beeinflussen.

Definition: Die allgemeine Form einer Sinusfunktion wird als f(x) = a · sin(bx + c) + d dargestellt, wobei jeder Parameter eine spezifische Auswirkung auf den Graphen hat.

Die Bedeutung der einzelnen Parameter wird detailliert erläutert:

  • a beeinflusst die Amplitude (Ausschlag der Welle)
  • b ändert die Wellenlänge
  • c verschiebt den Graphen horizontal
  • d verschiebt den Graphen vertikal

Highlight: Die Amplitude einer Sinusfunktion kann durch (ymax + ymin) / 2 berechnet werden, während die Periode durch 2π / b bestimmt wird.

Die Seite behandelt auch die Ableitung trigonometrischer Funktionen, einschließlich der Ableitung von Sinus und Ableitung von Cosinus. Wichtige Ableitungsregeln wie die Potenzregel, Faktorregel und Summenregel werden vorgestellt und mit Beispielen veranschaulicht.

Example: Bei der Potenzregel wird für f(x) = xⁿ die Ableitung f'(x) = n · xⁿ⁻¹ gebildet.

Ein besonderer Fokus liegt auf der Umrechnung zwischen Grad- und Bogenmaß, was für das Verständnis trigonometrischer Funktionen unerlässlich ist. Es wird erklärt, dass 360° einem Vollkreis entsprechen und somit 2π im Bogenmaß.

Vocabulary: Das Bogenmaß ist eine alternative Winkelmessung, bei der der Winkel durch die Länge des zugehörigen Kreisbogens auf dem Einheitskreis ausgedrückt wird.

Abschließend werden spezielle Werte für Sinus und Cosinus an wichtigen Punkten wie 0, π/2 und π angegeben, was für das Verständnis des Funktionsverlaufs hilfreich ist. Die Seite bietet somit eine solide Grundlage für das Arbeiten mit trigonometrischen Funktionen und deren Ableitungen.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Einfach erklärt: Ableitung von Sinus und Cosinus für Kids

user profile picture

lilly

@lilly

·

888 Follower

Follow

Die Lektion behandelt trigonometrische Funktionen mit Fokus auf Sinus- und Cosinusfunktionen, deren Eigenschaften, Ableitungen und Parameterbestimmung. Wichtige Konzepte wie Amplitude, Wellenlänge und Verschiebungen werden erläutert. Ableitungsregeln, einschließlich der Kettenregel, werden für verschiedene Funktionstypen vorgestellt.

Sinus- und Cosinusfunktionen werden detailliert erklärt, einschließlich ihrer Graphen und charakteristischen Punkte.
• Die Ableitung trigonometrischer Funktionen wird behandelt, mit besonderem Augenmerk auf Ableitung Sinus, Ableitung Cosinus und deren Variationen.
• Parameterbestimmung und Verschiebungen der Funktionsgraphen werden ausführlich besprochen.
• Verschiedene Ableitungsregeln wie Potenz-, Faktor- und Summenregel werden vorgestellt und angewendet.
• Die Umrechnung zwischen Grad- und Bogenmaß wird erklärt, was für das Verständnis trigonometrischer Funktionen wesentlich ist.

29.1.2021

6497

 

11/12

 

Mathe

280

MATHE
1. KLAUSUR
TRIGONOMETRISCHE FONITIONEN:
SINUS & COSINUSFUNKTION
G TT
g(x)=sin(x-)
F
a= Yn=Y+
3TT
f(x)= a · Sin (6x + c) +d²
andert AMP

Trigonometrische Funktionen: Sinus & Cosinusfunktion

Diese Seite bietet eine umfassende Übersicht über trigonometrische Funktionen, insbesondere Sinus- und Cosinusfunktionen. Sie erklärt die grundlegenden Eigenschaften dieser Funktionen, ihre Graphen und wie verschiedene Parameter die Form und Position der Graphen beeinflussen.

Definition: Die allgemeine Form einer Sinusfunktion wird als f(x) = a · sin(bx + c) + d dargestellt, wobei jeder Parameter eine spezifische Auswirkung auf den Graphen hat.

Die Bedeutung der einzelnen Parameter wird detailliert erläutert:

  • a beeinflusst die Amplitude (Ausschlag der Welle)
  • b ändert die Wellenlänge
  • c verschiebt den Graphen horizontal
  • d verschiebt den Graphen vertikal

Highlight: Die Amplitude einer Sinusfunktion kann durch (ymax + ymin) / 2 berechnet werden, während die Periode durch 2π / b bestimmt wird.

Die Seite behandelt auch die Ableitung trigonometrischer Funktionen, einschließlich der Ableitung von Sinus und Ableitung von Cosinus. Wichtige Ableitungsregeln wie die Potenzregel, Faktorregel und Summenregel werden vorgestellt und mit Beispielen veranschaulicht.

Example: Bei der Potenzregel wird für f(x) = xⁿ die Ableitung f'(x) = n · xⁿ⁻¹ gebildet.

Ein besonderer Fokus liegt auf der Umrechnung zwischen Grad- und Bogenmaß, was für das Verständnis trigonometrischer Funktionen unerlässlich ist. Es wird erklärt, dass 360° einem Vollkreis entsprechen und somit 2π im Bogenmaß.

Vocabulary: Das Bogenmaß ist eine alternative Winkelmessung, bei der der Winkel durch die Länge des zugehörigen Kreisbogens auf dem Einheitskreis ausgedrückt wird.

Abschließend werden spezielle Werte für Sinus und Cosinus an wichtigen Punkten wie 0, π/2 und π angegeben, was für das Verständnis des Funktionsverlaufs hilfreich ist. Die Seite bietet somit eine solide Grundlage für das Arbeiten mit trigonometrischen Funktionen und deren Ableitungen.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.