Fächer

Fächer

Mehr

Spaß mit Sport, Mathe und Physik im Abitur! Beispielaufgaben und Tipps

Öffnen

Spaß mit Sport, Mathe und Physik im Abitur! Beispielaufgaben und Tipps
user profile picture

Maren

@maren03

·

12 Follower

Follow

The Mathe-Abi Themen Übersicht covers advanced calculus concepts, including exponential functions, derivatives, and volume calculations. This guide provides detailed examples and solutions for Mathe Abitur Grundlegendes Niveau problems, focusing on function analysis and geometric applications.

Key points:

  • Exploration of exponential functions and their properties
  • Derivative calculations and analysis
  • Volume calculations using integrals
  • Application of calculus to real-world problems (e.g., vase design)

24.10.2021

178

Aufgabe 1: Geogebra
CAS+ f(x):=e**** (x² + a)
Lose (f(x.a)-0)- x -√-a
x= √-a
6 CAS+ f(aa) =a · eªs
Sylola.e
[fix.a) - fix, 0)
2,0)
1-x²+2x -

Öffnen

Exponential Functions and Derivatives

This page delves into complex mathematical concepts related to exponential functions and their derivatives, essential for Mathe im Abitur. The content covers various aspects of function analysis, including solving equations, finding extrema, and calculating limits.

The page begins with a Geogebra task involving an exponential function f(x) = e^(x² + a). Students are guided through several steps to analyze this function:

Example: Solving the equation f(x,a) = 0 yields x = √-a, demonstrating the relationship between the parameter 'a' and the function's roots.

A significant portion of the page is dedicated to derivative calculations and their applications:

Highlight: The first and second derivatives of f(x,a) are calculated, providing insights into the function's behavior and critical points.

The concept of limits is introduced, emphasizing the function's behavior as x approaches infinity:

Definition: The limit of f(x) as x approaches infinity is explored, showing that lim(x→∞) f(x) = 0.

The page also covers more advanced topics such as factorization and solving complex equations:

Vocabulary: Factorization (Faktorisieren) is applied to simplify expressions like e^(x² - 4x + a + 2).

Practical applications are demonstrated through a specific example of a function f₀.₆₅(x) = e^(-x+0.5) · (x² + 0.65), which is analyzed in detail:

Example: The maximum radius of a vase described by this function is calculated to be 1.07 dm at x₁ = 0 and x₂ = 1.59.

Aufgabe 1: Geogebra
CAS+ f(x):=e**** (x² + a)
Lose (f(x.a)-0)- x -√-a
x= √-a
6 CAS+ f(aa) =a · eªs
Sylola.e
[fix.a) - fix, 0)
2,0)
1-x²+2x -

Öffnen

Volume Calculations and Geometric Applications

This page focuses on applying calculus concepts to real-world problems, particularly in the context of volume calculations and geometric analysis. It demonstrates the practical use of Integral und Rauminhalt in solving complex mathematical problems.

The main topic of this page is the calculation of the volume of a vase using integral calculus:

Example: The volume of the vase is calculated using the formula V = π ∫ (f₀.₆₅(x))² dx, resulting in a volume of 8.08 dm³ or 8.08 L.

The page explains how the function describes the volume of the vase up to a certain height:

Definition: The function π ∫ (f₀.₆₅(x))² dx represents the volume of the vase up to height t.

Geometric relationships are explored, demonstrating how to calculate areas and radii:

Highlight: The relationship between the radius (r) and the side length (a) of a right-angled triangle is expressed as a² = r² + (√3/2)².

The page concludes with a practical application, determining the minimum volume required for a carton to contain the vase:

Example: The carton must have a minimum volume of 11.9 dm³ to accommodate a vase with a maximum radius of 1.07 dm and a height of 3 dm.

This section effectively demonstrates the application of calculus in solving real-world problems, a key aspect of Mathe-Abi Aufgabentypen.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Spaß mit Sport, Mathe und Physik im Abitur! Beispielaufgaben und Tipps

user profile picture

Maren

@maren03

·

12 Follower

Follow

The Mathe-Abi Themen Übersicht covers advanced calculus concepts, including exponential functions, derivatives, and volume calculations. This guide provides detailed examples and solutions for Mathe Abitur Grundlegendes Niveau problems, focusing on function analysis and geometric applications.

Key points:

  • Exploration of exponential functions and their properties
  • Derivative calculations and analysis
  • Volume calculations using integrals
  • Application of calculus to real-world problems (e.g., vase design)

24.10.2021

178

 

11/12

 

Mathe

2

Aufgabe 1: Geogebra
CAS+ f(x):=e**** (x² + a)
Lose (f(x.a)-0)- x -√-a
x= √-a
6 CAS+ f(aa) =a · eªs
Sylola.e
[fix.a) - fix, 0)
2,0)
1-x²+2x -

Exponential Functions and Derivatives

This page delves into complex mathematical concepts related to exponential functions and their derivatives, essential for Mathe im Abitur. The content covers various aspects of function analysis, including solving equations, finding extrema, and calculating limits.

The page begins with a Geogebra task involving an exponential function f(x) = e^(x² + a). Students are guided through several steps to analyze this function:

Example: Solving the equation f(x,a) = 0 yields x = √-a, demonstrating the relationship between the parameter 'a' and the function's roots.

A significant portion of the page is dedicated to derivative calculations and their applications:

Highlight: The first and second derivatives of f(x,a) are calculated, providing insights into the function's behavior and critical points.

The concept of limits is introduced, emphasizing the function's behavior as x approaches infinity:

Definition: The limit of f(x) as x approaches infinity is explored, showing that lim(x→∞) f(x) = 0.

The page also covers more advanced topics such as factorization and solving complex equations:

Vocabulary: Factorization (Faktorisieren) is applied to simplify expressions like e^(x² - 4x + a + 2).

Practical applications are demonstrated through a specific example of a function f₀.₆₅(x) = e^(-x+0.5) · (x² + 0.65), which is analyzed in detail:

Example: The maximum radius of a vase described by this function is calculated to be 1.07 dm at x₁ = 0 and x₂ = 1.59.

Aufgabe 1: Geogebra
CAS+ f(x):=e**** (x² + a)
Lose (f(x.a)-0)- x -√-a
x= √-a
6 CAS+ f(aa) =a · eªs
Sylola.e
[fix.a) - fix, 0)
2,0)
1-x²+2x -

Volume Calculations and Geometric Applications

This page focuses on applying calculus concepts to real-world problems, particularly in the context of volume calculations and geometric analysis. It demonstrates the practical use of Integral und Rauminhalt in solving complex mathematical problems.

The main topic of this page is the calculation of the volume of a vase using integral calculus:

Example: The volume of the vase is calculated using the formula V = π ∫ (f₀.₆₅(x))² dx, resulting in a volume of 8.08 dm³ or 8.08 L.

The page explains how the function describes the volume of the vase up to a certain height:

Definition: The function π ∫ (f₀.₆₅(x))² dx represents the volume of the vase up to height t.

Geometric relationships are explored, demonstrating how to calculate areas and radii:

Highlight: The relationship between the radius (r) and the side length (a) of a right-angled triangle is expressed as a² = r² + (√3/2)².

The page concludes with a practical application, determining the minimum volume required for a carton to contain the vase:

Example: The carton must have a minimum volume of 11.9 dm³ to accommodate a vase with a maximum radius of 1.07 dm and a height of 3 dm.

This section effectively demonstrates the application of calculus in solving real-world problems, a key aspect of Mathe-Abi Aufgabentypen.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.