Fächer

Fächer

Mehr

Exponentielles Wachstum und Abnahme: Aufgaben und Beispiele für die Schule

Öffnen

Exponentielles Wachstum und Abnahme: Aufgaben und Beispiele für die Schule
user profile picture

caja ♡

@caja.pl

·

53 Follower

Follow

Exponential growth is a mathematical concept crucial in various fields. This guide explores its principles, formulas, and applications, particularly in e-functions and bacterial growth.

  • Exponential functions have a constant growth rate, where the rate of change is proportional to the current value.
  • The guide covers key concepts like the natural base e, derivatives of exponential functions, and logarithms.
  • Practical applications include modeling population growth, compound interest, and radioactive decay.

20.11.2021

199

Exponentielles Wachstum
+1 +2 -1
01243
S 15 45 405 135
3²:3
Beispiel X
f(x)
Ableitung
f(x) = 2*
Basis e
+4
lim
f'(x) = h→0
Für f(x) = ex
gil

Öffnen

Exponential Growth Fundamentals

This page introduces the core concepts of exponential growth and its mathematical representation. It covers the basic formula and its derivatives, emphasizing the importance of the natural base e in exponential functions.

The page begins with examples of exponential sequences, demonstrating the rapid increase characteristic of exponential growth. It then delves into the mathematical representation of exponential functions, particularly focusing on functions with base 2 and base e.

Definition: Exponential growth is a pattern of data that shows greater increases over time.

The derivative of exponential functions is explored, with a special focus on the unique property of e^x, whose derivative is itself. This property makes e a fundamental constant in calculus and many natural phenomena.

Example: For the function f(x) = 2^x, its derivative is calculated using the limit definition, resulting in f'(x) = 2^x * ln(2).

The page also introduces the concept of the natural logarithm (ln) and its relationship to exponential functions with base e.

Highlight: The natural base e is crucial in exponential functions because its derivative remains unchanged, simplifying many calculations in calculus and applied mathematics.

Exponentielles Wachstum
+1 +2 -1
01243
S 15 45 405 135
3²:3
Beispiel X
f(x)
Ableitung
f(x) = 2*
Basis e
+4
lim
f'(x) = h→0
Für f(x) = ex
gil

Öffnen

Advanced Exponential Concepts and Applications

This page delves deeper into the properties of exponential functions and their applications. It focuses on more complex exponential expressions and the chain rule for differentiation.

The page starts by examining exponential functions with different bases, such as f(x) = 5·3^x, and how to interpret the components of such functions.

Vocabulary: The "Startwert" (initial value) and "Wachstumsfaktor" (growth factor) are key components in exponential functions, determining the starting point and rate of growth respectively.

The concept of the chain rule in calculus is introduced, showing how it applies to more complex exponential functions. This is particularly useful for solving exponential growth e-function problems.

Example: For a function f(x) = e^(ln(2)·x), the derivative is calculated using the chain rule, resulting in f'(x) = e^(ln(2)·x) · ln(2).

The page concludes with a focus on the natural logarithm and its inverse relationship with exponential functions, which is crucial for solving many exponential growth problems with solutions.

Highlight: Understanding the relationship between exponential functions and their derivatives is key to solving real-world problems involving exponential growth in bacteria or financial modeling.

This comprehensive guide provides students with the tools to tackle a wide range of exponential growth tasks with solutions, from basic concepts to more advanced applications in various fields.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Exponentielles Wachstum und Abnahme: Aufgaben und Beispiele für die Schule

user profile picture

caja ♡

@caja.pl

·

53 Follower

Follow

Exponential growth is a mathematical concept crucial in various fields. This guide explores its principles, formulas, and applications, particularly in e-functions and bacterial growth.

  • Exponential functions have a constant growth rate, where the rate of change is proportional to the current value.
  • The guide covers key concepts like the natural base e, derivatives of exponential functions, and logarithms.
  • Practical applications include modeling population growth, compound interest, and radioactive decay.

20.11.2021

199

 

12/13

 

Mathe

3

Exponentielles Wachstum
+1 +2 -1
01243
S 15 45 405 135
3²:3
Beispiel X
f(x)
Ableitung
f(x) = 2*
Basis e
+4
lim
f'(x) = h→0
Für f(x) = ex
gil

Exponential Growth Fundamentals

This page introduces the core concepts of exponential growth and its mathematical representation. It covers the basic formula and its derivatives, emphasizing the importance of the natural base e in exponential functions.

The page begins with examples of exponential sequences, demonstrating the rapid increase characteristic of exponential growth. It then delves into the mathematical representation of exponential functions, particularly focusing on functions with base 2 and base e.

Definition: Exponential growth is a pattern of data that shows greater increases over time.

The derivative of exponential functions is explored, with a special focus on the unique property of e^x, whose derivative is itself. This property makes e a fundamental constant in calculus and many natural phenomena.

Example: For the function f(x) = 2^x, its derivative is calculated using the limit definition, resulting in f'(x) = 2^x * ln(2).

The page also introduces the concept of the natural logarithm (ln) and its relationship to exponential functions with base e.

Highlight: The natural base e is crucial in exponential functions because its derivative remains unchanged, simplifying many calculations in calculus and applied mathematics.

Exponentielles Wachstum
+1 +2 -1
01243
S 15 45 405 135
3²:3
Beispiel X
f(x)
Ableitung
f(x) = 2*
Basis e
+4
lim
f'(x) = h→0
Für f(x) = ex
gil

Advanced Exponential Concepts and Applications

This page delves deeper into the properties of exponential functions and their applications. It focuses on more complex exponential expressions and the chain rule for differentiation.

The page starts by examining exponential functions with different bases, such as f(x) = 5·3^x, and how to interpret the components of such functions.

Vocabulary: The "Startwert" (initial value) and "Wachstumsfaktor" (growth factor) are key components in exponential functions, determining the starting point and rate of growth respectively.

The concept of the chain rule in calculus is introduced, showing how it applies to more complex exponential functions. This is particularly useful for solving exponential growth e-function problems.

Example: For a function f(x) = e^(ln(2)·x), the derivative is calculated using the chain rule, resulting in f'(x) = e^(ln(2)·x) · ln(2).

The page concludes with a focus on the natural logarithm and its inverse relationship with exponential functions, which is crucial for solving many exponential growth problems with solutions.

Highlight: Understanding the relationship between exponential functions and their derivatives is key to solving real-world problems involving exponential growth in bacteria or financial modeling.

This comprehensive guide provides students with the tools to tackle a wide range of exponential growth tasks with solutions, from basic concepts to more advanced applications in various fields.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.