App öffnen

Fächer

38.029

31. Jan. 2026

4 Seiten

Unbestimmte Integrale: Einfach erklärt mit Beispielen und Aufgaben

Integral calculus is a fundamental concept in mathematics, encompassing both ... Mehr anzeigen

Page 1
Page 2
Page 3
Page 4
1 / 4
# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Rules for Indefinite Integrals

This page covers essential rules for calculating unbestimmte Integrale (indefinite integrals). These rules form the foundation for more complex integration techniques.

Vocabulary:

  • Potenzregel (Power Rule)
  • Summenregel (Sum Rule)
  • Faktorregel (Constant Multiple Rule)
  • Sinus- und Cosinusregel (Sine and Cosine Rule)
  • Substitutionsregel (Substitution Rule)

Each rule is presented with its mathematical formulation and examples of its application. The power rule, for instance, is given as ∫x^n dx = x(n+1)x^(n+1)/n+1n+1 + C for n ≠ -1.

Example: Using the power rule, ∫x² dx = (1/3)x³ + C.

The page also introduces the substitution rule for more complex integrals involving composite functions. This rule is crucial for solving integrals that cannot be directly solved using basic rules.

Highlight: The substitution rule is particularly useful for integrals of the form ∫f(g(x))g'(x)dx, where a change of variable simplifies the integration process.

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Definite Integrals

This page introduces the concept of bestimmte Integrale (definite integrals) and their geometric interpretation as the area under a curve.

Definition: A definite integral is an integral with specified upper and lower limits of integration, representing a specific area under a curve.

The notation for definite integrals is presented as ∫[a to b] f(x)dx = [F(x)]^b_a = F(b) - F(a), where a and b are the lower and upper limits of integration, respectively.

Example: The definite integral ∫1to2-1 to 2 x2x-2dx is calculated step-by-step, demonstrating how to apply the fundamental theorem of calculus.

The page also illustrates the concept of upper and lower sums, which are used to approximate the area under a curve before introducing the definite integral as the exact area.

Highlight: Definite integrals can represent both positive and negative areas, depending on the function and the interval of integration.

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Rules for Definite Integrals

This final page covers important rules and properties specific to bestimmte Integrale (definite integrals), enhancing the understanding of their behavior and calculation methods.

Key rules presented include:

  1. Zero integral when upper and lower limits are the same
  2. Interval additivity
  3. Sign change when swapping integration limits
  4. Constant multiple rule
  5. Sum rule

Example: The interval additivity rule is demonstrated: ∫[a to b] f(x)dx + ∫[b to c] f(x)dx = ∫[a to c] f(x)dx

These rules are crucial for simplifying complex definite integral calculations and understanding the properties of definite integrals.

Highlight: The sign change rule, ∫[a to b] f(x)dx = -∫[b to a] f(x)dx, is particularly useful when dealing with integrals where the limits need to be swapped.

The page concludes with practical examples applying these rules, reinforcing their application in solving definite integral problems.

Vocabulary: Intervalladditivität (Interval Additivity) - A key property of definite integrals that allows breaking down integrals over larger intervals into sums of integrals over smaller intervals.

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Introduction to Integral Calculus

This page introduces the concept of integral calculus and its relationship to differentiation. It explains the fundamental idea of finding antiderivatives, also known as indefinite integrals.

Definition: Integration is the process of calculating integrals, which is the reverse operation of differentiation.

The page illustrates the connection between derivatives and antiderivatives, showing how integrating or"antidifferentiating"or "anti-differentiating" a function leads to its antiderivative.

Example: For the function f(x) = 2x, the antiderivative F(x) = x² + C, where C is a constant.

The concept of unbestimmte Integrale (indefinite integrals) is introduced, emphasizing that there are infinitely many antiderivatives for a given function, differing only by a constant.

Highlight: The notation for indefinite integrals is ∫f(x)dx = F(x) + C, where C is an arbitrary constant of integration.



Wir dachten schon, du fragst nie...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist ein speziell für Schüler entwickeltes KI-Tool, das mehr als nur Antworten bietet. Basierend auf Millionen von Knowunity-Inhalten liefert er relevante Informationen, personalisierte Lernpläne, Quizze und Inhalte direkt im Chat und passt sich deinem individuellen Lernweg an.

Wo kann ich die Knowunity-App herunterladen?

Du kannst die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Genau! Genieße kostenlosen Zugang zu Lerninhalten, vernetze dich mit anderen Schülern und hol dir sofortige Hilfe – alles direkt auf deinem Handy.

Beliebtester Inhalt in Mathe

Beliebtester Inhalt

Findest du nicht, was du suchst? Entdecke andere Fächer.

Schüler lieben uns — und du auch.

4.6/5

App Store

4.7/5

Google Play

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer

 

Mathe

38.029

31. Jan. 2026

4 Seiten

Unbestimmte Integrale: Einfach erklärt mit Beispielen und Aufgaben

Integral calculus is a fundamental concept in mathematics, encompassing both unbestimmte Integrale (indefinite integrals) and bestimmte Integrale (definite integrals). This summary covers key aspects of integration, including:

  • Definition and properties of indefinite and definite integrals
  • Rules for calculating integrals
  • Applications... Mehr anzeigen

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Rules for Indefinite Integrals

This page covers essential rules for calculating unbestimmte Integrale (indefinite integrals). These rules form the foundation for more complex integration techniques.

Vocabulary:

  • Potenzregel (Power Rule)
  • Summenregel (Sum Rule)
  • Faktorregel (Constant Multiple Rule)
  • Sinus- und Cosinusregel (Sine and Cosine Rule)
  • Substitutionsregel (Substitution Rule)

Each rule is presented with its mathematical formulation and examples of its application. The power rule, for instance, is given as ∫x^n dx = x(n+1)x^(n+1)/n+1n+1 + C for n ≠ -1.

Example: Using the power rule, ∫x² dx = (1/3)x³ + C.

The page also introduces the substitution rule for more complex integrals involving composite functions. This rule is crucial for solving integrals that cannot be directly solved using basic rules.

Highlight: The substitution rule is particularly useful for integrals of the form ∫f(g(x))g'(x)dx, where a change of variable simplifies the integration process.

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Definite Integrals

This page introduces the concept of bestimmte Integrale (definite integrals) and their geometric interpretation as the area under a curve.

Definition: A definite integral is an integral with specified upper and lower limits of integration, representing a specific area under a curve.

The notation for definite integrals is presented as ∫[a to b] f(x)dx = [F(x)]^b_a = F(b) - F(a), where a and b are the lower and upper limits of integration, respectively.

Example: The definite integral ∫1to2-1 to 2 x2x-2dx is calculated step-by-step, demonstrating how to apply the fundamental theorem of calculus.

The page also illustrates the concept of upper and lower sums, which are used to approximate the area under a curve before introducing the definite integral as the exact area.

Highlight: Definite integrals can represent both positive and negative areas, depending on the function and the interval of integration.

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Rules for Definite Integrals

This final page covers important rules and properties specific to bestimmte Integrale (definite integrals), enhancing the understanding of their behavior and calculation methods.

Key rules presented include:

  1. Zero integral when upper and lower limits are the same
  2. Interval additivity
  3. Sign change when swapping integration limits
  4. Constant multiple rule
  5. Sum rule

Example: The interval additivity rule is demonstrated: ∫[a to b] f(x)dx + ∫[b to c] f(x)dx = ∫[a to c] f(x)dx

These rules are crucial for simplifying complex definite integral calculations and understanding the properties of definite integrals.

Highlight: The sign change rule, ∫[a to b] f(x)dx = -∫[b to a] f(x)dx, is particularly useful when dealing with integrals where the limits need to be swapped.

The page concludes with practical examples applying these rules, reinforcing their application in solving definite integral problems.

Vocabulary: Intervalladditivität (Interval Additivity) - A key property of definite integrals that allows breaking down integrals over larger intervals into sums of integrals over smaller intervals.

# INTEGRALRECHNUNG

Die Berechnung von Integralen nennt man Integration

Stammfunktionen und unbestimmte Integrale
Wenn man die Stammfunktio

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Introduction to Integral Calculus

This page introduces the concept of integral calculus and its relationship to differentiation. It explains the fundamental idea of finding antiderivatives, also known as indefinite integrals.

Definition: Integration is the process of calculating integrals, which is the reverse operation of differentiation.

The page illustrates the connection between derivatives and antiderivatives, showing how integrating or"antidifferentiating"or "anti-differentiating" a function leads to its antiderivative.

Example: For the function f(x) = 2x, the antiderivative F(x) = x² + C, where C is a constant.

The concept of unbestimmte Integrale (indefinite integrals) is introduced, emphasizing that there are infinitely many antiderivatives for a given function, differing only by a constant.

Highlight: The notation for indefinite integrals is ∫f(x)dx = F(x) + C, where C is an arbitrary constant of integration.

Wir dachten schon, du fragst nie...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist ein speziell für Schüler entwickeltes KI-Tool, das mehr als nur Antworten bietet. Basierend auf Millionen von Knowunity-Inhalten liefert er relevante Informationen, personalisierte Lernpläne, Quizze und Inhalte direkt im Chat und passt sich deinem individuellen Lernweg an.

Wo kann ich die Knowunity-App herunterladen?

Du kannst die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Genau! Genieße kostenlosen Zugang zu Lerninhalten, vernetze dich mit anderen Schülern und hol dir sofortige Hilfe – alles direkt auf deinem Handy.

2162

Smart Tools NEU

Verwandle diesen Lernzettel in: ✓ 50+ Übungsfragen ✓ Interaktive Karteikarten ✓ Komplette Probeklausur ✓ Aufsatzgliederungen

Probeklausur
Quiz
Karteikarten
Aufsatz

Ähnlicher Inhalt

Integralrechnung Grundlagen

Entdecken Sie die wesentlichen Konzepte der Integralrechnung, einschließlich der Stammfunktion, unbestimmten Integrale, Potenzregel, Summenregel, Faktorenregel und der linearen Kettenregel. Diese Zusammenfassung bietet klare Erklärungen und Beispiele zur Anwendung der Regeln in der Differential- und Integralrechnung.

MatheMathe
11

Integrale: Bestimmt & Unbestimmt

Entdecken Sie die Grundlagen der Integrale, einschließlich unbestimmter und bestimmter Integrale sowie der Regeln der Integration. Diese Zusammenfassung behandelt wichtige Konzepte wie das unbestimmte Integral, den Hauptsatz der Differential- und Integralrechnung und spezifische Integrationsregeln. Ideal für Schüler der 12. Klasse, die sich auf Prüfungen vorbereiten.

MatheMathe
10

Integrationsmethoden verstehen

Erforschen Sie die Streifenmethode des Archimedes und die Grundlagen der unbestimmten und bestimmten Integrale. Diese Zusammenfassung behandelt wichtige Integrationsregeln, wie die Summenregel, Faktorregel und Substitutionsregel, sowie Techniken zur Berechnung von Integralen. Ideal für Studierende der Analysis und Integralrechnung.

MatheMathe
12

Bestimmte Integrale Berechnen

Erfahren Sie, wie man bestimmte Integrale berechnet und die Flächenbilanz zwischen Graphen und der x-Achse ermittelt. Diese Zusammenfassung behandelt die Grundlagen der Integralrechnung, Stammfunktionen und deren Anwendung zur Bestimmung von Beständen. Ideal für Studierende der Differential- und Integralrechnung.

MatheMathe
12

Integralrechnung Grundlagen

Entdecken Sie die Grundlagen der Integralrechnung, einschließlich der Definition des Integrals, der Berechnung von Integralen, der Eigenschaften von Stammfunktionen und der Flächenberechnung zwischen Graphen. Diese Zusammenfassung bietet einen klaren Überblick über die lokale Änderungsrate und das Verhalten von Integralen im Unendlichen. Ideal für Studierende der Mathematik und zur Vorbereitung auf Prüfungen.

MatheMathe
11

Integralrechnung Grundlagen

Entdecken Sie die wesentlichen Konzepte der Integralrechnung, einschließlich des Hauptsatzes der Integralrechnung, der Flächenberechnung zwischen Graphen und der Mittelwertregel. Diese Zusammenfassung bietet klare Erklärungen zu Integrationsregeln und deren Anwendungen in der Mathematik. Ideal für die Vorbereitung auf Mathe GK Klausuren.

MatheMathe
11

Beliebtester Inhalt in Mathe

Beliebtester Inhalt

Findest du nicht, was du suchst? Entdecke andere Fächer.

Schüler lieben uns — und du auch.

4.6/5

App Store

4.7/5

Google Play

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer