Fächer

Fächer

Mehr

Math Answers for Bsv and Fundamente 12 PDFs

Öffnen

Math Answers for Bsv and Fundamente 12 PDFs
user profile picture

good day ☺️

@user_lamacrf6nb

·

110 Follower

Follow

The document covers solutions to various mathematical problems, focusing on linear equations and systems of equations. It demonstrates step-by-step problem-solving techniques for Bsv Mathematik 12 Lösungen PDF and Fundamente der Mathematik 12 Lösungen PDF.

Key points:
• Solving systems of linear equations with two and three variables
• Interpreting and solving word problems involving linear equations
• Analyzing the nature of solutions (infinite, no solution, unique solution)
• Using substitution and elimination methods for problem-solving
• Applying mathematical concepts to real-world scenarios

29.7.2021

300

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Öffnen

Page 2: Word Problem Application

This page applies linear equations to a real-world scenario involving the pricing of pencils and erasers.

Example: 14x + 3y = 6.90 and 2x + y = 3.10, where x represents the price of a pencil and y represents the price of an eraser.

Highlight: The solution demonstrates how to interpret word problems and translate them into mathematical equations.

The problem is solved systematically, first isolating one variable and then solving for the other. The final answer is presented clearly, stating that one pencil costs €1.20 and one eraser costs €0.70.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Öffnen

Page 3: Analyzing Solution Types

This page focuses on analyzing different types of solutions for systems of linear equations.

Definition: A system with "unendlich viele Lsg." (infinitely many solutions) represents a true statement, while "keine Lsg." (no solution) represents a false statement.

Example: 3x - 2y = 0 and 9x - 6y = 0 are shown to have infinitely many solutions.

The page demonstrates how to determine whether a system has infinite solutions, no solutions, or a unique solution. This concept is crucial in understanding the nature of linear systems and their graphical representations.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Öffnen

Page 4: Solving Systems with Three Variables

This page introduces systems of equations with three variables, demonstrating more complex problem-solving techniques.

Highlight: The page shows how to solve a system of three equations with three unknowns using elimination and substitution methods.

Vocabulary: "Rückwärts einsetzen" means "back-substitution," a technique used to find values for all variables after solving for one.

The solutions are presented step-by-step, allowing students to follow the process of eliminating variables and solving for each unknown systematically.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Öffnen

Page 5: Continuation of Three-Variable Systems

This page continues the solution process for the three-variable system introduced on the previous page.

Example: The final solution set is presented as K = {(1, 2, 3)}, representing the values for x, y, and z respectively.

Highlight: The page demonstrates the importance of checking the solution by substituting the values back into the original equations.

The step-by-step process shown here is crucial for understanding how to solve complex systems of equations and verify the correctness of the solution.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Öffnen

Page 6: Decimal Coefficients in Linear Systems

The final page deals with a system of linear equations involving decimal coefficients.

Example: x + 2y + 6z = 3.75 is one of the equations in the system, showcasing how to handle decimal values in linear systems.

Highlight: The solution process demonstrates how to manipulate equations with decimal coefficients without converting them to fractions.

This page emphasizes the importance of precision when working with decimal values in linear systems. It also reinforces the back-substitution technique to find all variable values after solving for one.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Öffnen

Page 1: Solving Systems of Linear Equations

This page demonstrates solutions to systems of linear equations with two variables. The problems involve finding the intersection points of lines represented by these equations.

Example: 3x + 4y = 16 and x = 2 are solved simultaneously to find the point of intersection (2, 2).

Highlight: The page showcases different methods of solving systems, including substitution and elimination.

Vocabulary: "Eingesetzt" means "substituted" in German, indicating the substitution method used in solving these equations.

The solutions are presented step-by-step, allowing students to follow the problem-solving process clearly. The page also includes graphical representations of the solutions, helping to visualize the intersection points.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Math Answers for Bsv and Fundamente 12 PDFs

user profile picture

good day ☺️

@user_lamacrf6nb

·

110 Follower

Follow

The document covers solutions to various mathematical problems, focusing on linear equations and systems of equations. It demonstrates step-by-step problem-solving techniques for Bsv Mathematik 12 Lösungen PDF and Fundamente der Mathematik 12 Lösungen PDF.

Key points:
• Solving systems of linear equations with two and three variables
• Interpreting and solving word problems involving linear equations
• Analyzing the nature of solutions (infinite, no solution, unique solution)
• Using substitution and elimination methods for problem-solving
• Applying mathematical concepts to real-world scenarios

29.7.2021

300

 

11

 

Mathe

9

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Page 2: Word Problem Application

This page applies linear equations to a real-world scenario involving the pricing of pencils and erasers.

Example: 14x + 3y = 6.90 and 2x + y = 3.10, where x represents the price of a pencil and y represents the price of an eraser.

Highlight: The solution demonstrates how to interpret word problems and translate them into mathematical equations.

The problem is solved systematically, first isolating one variable and then solving for the other. The final answer is presented clearly, stating that one pencil costs €1.20 and one eraser costs €0.70.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Page 3: Analyzing Solution Types

This page focuses on analyzing different types of solutions for systems of linear equations.

Definition: A system with "unendlich viele Lsg." (infinitely many solutions) represents a true statement, while "keine Lsg." (no solution) represents a false statement.

Example: 3x - 2y = 0 and 9x - 6y = 0 are shown to have infinitely many solutions.

The page demonstrates how to determine whether a system has infinite solutions, no solutions, or a unique solution. This concept is crucial in understanding the nature of linear systems and their graphical representations.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Page 4: Solving Systems with Three Variables

This page introduces systems of equations with three variables, demonstrating more complex problem-solving techniques.

Highlight: The page shows how to solve a system of three equations with three unknowns using elimination and substitution methods.

Vocabulary: "Rückwärts einsetzen" means "back-substitution," a technique used to find values for all variables after solving for one.

The solutions are presented step-by-step, allowing students to follow the process of eliminating variables and solving for each unknown systematically.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Page 5: Continuation of Three-Variable Systems

This page continues the solution process for the three-variable system introduced on the previous page.

Example: The final solution set is presented as K = {(1, 2, 3)}, representing the values for x, y, and z respectively.

Highlight: The page demonstrates the importance of checking the solution by substituting the values back into the original equations.

The step-by-step process shown here is crucial for understanding how to solve complex systems of equations and verify the correctness of the solution.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Page 6: Decimal Coefficients in Linear Systems

The final page deals with a system of linear equations involving decimal coefficients.

Example: x + 2y + 6z = 3.75 is one of the equations in the system, showcasing how to handle decimal values in linear systems.

Highlight: The solution process demonstrates how to manipulate equations with decimal coefficients without converting them to fractions.

This page emphasizes the importance of precision when working with decimal values in linear systems. It also reinforces the back-substitution technique to find all variable values after solving for one.

(1)
3 x + 4y
12 x
(3)
3x + 4y
16
x
x
чу
X
=5
>
= 4:2
+4y=5 X eingesetzt |-6
= 2
= -1
= 5
= 2
=
X
14 = {(61-4)}
-
1
2x+4y = 12
1-2x-3y = -10

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Page 1: Solving Systems of Linear Equations

This page demonstrates solutions to systems of linear equations with two variables. The problems involve finding the intersection points of lines represented by these equations.

Example: 3x + 4y = 16 and x = 2 are solved simultaneously to find the point of intersection (2, 2).

Highlight: The page showcases different methods of solving systems, including substitution and elimination.

Vocabulary: "Eingesetzt" means "substituted" in German, indicating the substitution method used in solving these equations.

The solutions are presented step-by-step, allowing students to follow the problem-solving process clearly. The page also includes graphical representations of the solutions, helping to visualize the intersection points.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.