Skizzieren von Graphen und Vorzeichentabellen
Dieser Abschnitt bietet praktische Anleitungen zum Skizzieren von Graphen ganzrationaler Funktionen. Es werden verschiedene Methoden vorgestellt, um den Graphen einer Funktion zu erstellen, darunter das Einzeichnen von Schnittpunkten mit den Koordinatenachsen, das Markieren durchlaufener Felder und die Berücksichtigung des Verhaltens im Unendlichen.
Ein besonderer Fokus liegt auf der Erstellung und Verwendung von Vorzeichentabellen. Diese Tabellen helfen dabei, das Vorzeichen der Funktionswerte in verschiedenen Intervallen zu bestimmen, insbesondere wenn der Funktionsterm in faktorisierter Form vorliegt.
Beispiel: Für die Funktion fx = -0,5x³ + 2x² - 2x = -0,5xx−2² wird eine Vorzeichentabelle erstellt, die zeigt, wie sich das Vorzeichen der Funktion in verschiedenen Intervallen ändert.
Die Bedeutung von Nullstellen wird ebenfalls erläutert, einschließlich der Unterscheidung zwischen Nullstellen gerader und ungerader Vielfachheit. Es wird erklärt, dass eine ganzrationale Funktion des Grades n höchstens n Nullstellen haben kann.
Vocabulary: Nullstellen gerader Vielfachheit sind Berührpunkte mit der x-Achse, während Nullstellen ungerader Vielfachheit Schnittpunkte mit der x-Achse darstellen.