App öffnen

Fächer

Quadratisches vs. Exponentielles Wachstum einfach erklärt – Beispiele & Aufgaben

Öffnen

3

0

user profile picture

Knowunity

6.3.2021

Mathe

Quadratisches / kubisches Wachstum

Quadratisches vs. Exponentielles Wachstum einfach erklärt – Beispiele & Aufgaben

Quadratisches und kubisches Wachstum sind wichtige mathematische Konzepte, die verschiedene Arten von Wachstumsprozessen beschreiben. Diese Wachstumsformen finden in vielen Bereichen des Alltags und der Wissenschaft Anwendung.

  • Quadratisches Wachstum wird durch eine Parabel dargestellt und zeigt eine quadratische Zu- oder Abnahme des Bestands.
  • Kubisches Wachstum wird durch eine S-Form repräsentiert und weist eine noch steilere Wachstumskurve auf.
  • Beide Wachstumsformen haben spezifische mathematische Formeln und Eigenschaften, die sie von anderen Wachstumsarten wie dem linearen Wachstum unterscheiden.
...

6.3.2021

373

Was ist quadratisches Wachstum?
• Wachstumsprozess kann durch eine Parabel dargestellt werden
● Der Bestand nimmt quadratisch zu bzw. ab
● Q

Öffnen

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

22 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 17 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

 

Mathe

373

6. März 2021

2 Seiten

Quadratisches vs. Exponentielles Wachstum einfach erklärt – Beispiele & Aufgaben

Quadratisches und kubisches Wachstum sind wichtige mathematische Konzepte, die verschiedene Arten von Wachstumsprozessen beschreiben. Diese Wachstumsformen finden in vielen Bereichen des Alltags und der Wissenschaft Anwendung.

  • Quadratisches Wachstumwird durch eine Parabel dargestellt und zeigt eine quadratische Zu- oder Abnahme... Mehr anzeigen

Was ist quadratisches Wachstum?
• Wachstumsprozess kann durch eine Parabel dargestellt werden
● Der Bestand nimmt quadratisch zu bzw. ab
● Q

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Was ist quadratisches Wachstum?
• Wachstumsprozess kann durch eine Parabel dargestellt werden
● Der Bestand nimmt quadratisch zu bzw. ab
● Q

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Quadratisches Wachstum

Quadratisches Wachstum ist ein mathematisches Konzept, das einen spezifischen Typ von Wachstumsprozess beschreibt. Bei dieser Art des Wachstums nimmt der Bestand quadratisch zu oder ab, was durch eine Parabel grafisch dargestellt werden kann.

Die mathematische Darstellung des quadratischen Wachstums erfolgt durch eine quadratische Funktion der Form f(x) = ax² + bx + c. Diese Formel ermöglicht es, den Bestand zu jedem Zeitpunkt präzise zu berechnen.

Definition: Quadratisches Wachstum ist ein Wachstumsprozess, bei dem der Bestand quadratisch zunimmt oder abnimmt, dargestellt durch eine Parabel.

Ein wichtiges Merkmal des quadratischen Wachstums ist, dass sich die Steigung oder Änderungsrate proportional verändert. Dies unterscheidet es von anderen Wachstumsformen wie dem linearen Wachstum oder dem exponentiellen Wachstum.

Die spezifische Form des quadratischen Wachstums lässt sich durch die Gleichung B(t) = B(0) + at² ausdrücken, wobei:

  • B(t) den Bestand zu einem Zeitpunkt t darstellt
  • B(0) den Anfangsbestand repräsentiert
  • a einen konstanten Faktor darstellt
  • t die vergangene Zeit beschreibt

Highlight: Die Formel B(t) = B(0) + at² ist zentral für das Verständnis und die Berechnung des quadratischen Wachstums.

Um das Wachstum genauer zu analysieren, können wir zwei wichtige Konzepte betrachten:

  1. Das Wachstum selbst, definiert als B(t + 1) - B(t), welches die Veränderung des Bestandes zwischen zwei aufeinanderfolgenden Zeitpunkten beschreibt.
  2. Die Wachstumsänderung k, die durch k = B(t) - 2 * B(t-1) + B(t-2) berechnet wird und die Änderung des Wachstums bei zwei aufeinanderfolgenden Zeitpunkten angibt.

Example: Ein Beispiel für quadratisches Wachstum im Alltag könnte die Ausbreitung einer Ölpest auf einer Wasseroberfläche sein. Die Fläche, die das Öl bedeckt, wächst quadratisch mit der Zeit.

Kubisches Wachstum

Kubisches Wachstum ist eine noch steilere Form des Wachstums als das quadratische Wachstum. Es wird durch eine S-förmige Kurve dargestellt und folgt einer kubischen Funktion.

Die mathematische Darstellung des kubischen Wachstums erfolgt durch eine kubische Funktion der Form f(x) = ax³ + bx² + cx + d. Diese Formel ermöglicht eine präzise Berechnung des Bestands zu jedem Zeitpunkt.

Definition: Kubisches Wachstum ist ein Wachstumsprozess, bei dem der Bestand kubisch zunimmt, dargestellt durch eine S-förmige Kurve.

Die spezifische Form des kubischen Wachstums lässt sich durch die Gleichung B(t) = B(0) + at³ ausdrücken, wobei die Variablen die gleiche Bedeutung haben wie beim quadratischen Wachstum.

Example: Ein Beispiel für kubisches Wachstum: Angenommen, wir haben einen Anfangsbestand B(0) = 100 und a = 2. Dann ergeben sich folgende Werte:

  • B(1) = 100 + 2 * 1³ = 102
  • B(2) = 100 + 2 * 2³ = 116

Dieses Beispiel zeigt, wie schnell der Bestand bei kubischem Wachstum zunehmen kann, insbesondere im Vergleich zum quadratischen oder linearen Wachstum.

Highlight: Kubisches Wachstum zeigt eine noch steilere Wachstumskurve als quadratisches Wachstum und kann in bestimmten natürlichen und technischen Prozessen beobachtet werden.

Sowohl quadratisches als auch kubisches Wachstum sind wichtige Konzepte in der Mathematik und finden Anwendung in verschiedenen Bereichen wie Physik, Biologie und Wirtschaft. Das Verständnis dieser Wachstumsformen ist entscheidend für die Analyse und Vorhersage komplexer Systeme und Prozesse.

Vocabulary:

  • Parabel: Eine symmetrische, U-förmige Kurve, die eine quadratische Funktion darstellt.
  • S-Form: Eine Kurve, die einem liegenden S ähnelt und typisch für kubisches Wachstum ist.

Wir dachten, du würdest nie fragen...

Was ist quadratisches Wachstum und wie erkenne ich es?

Quadratisches Wachstum erkennst du an einer Parabel-förmigen Kurve, bei der der Bestand nicht gleichmäßig, sondern mit zunehmender Geschwindigkeit wächst oder abnimmt. Die Grundformel lautet B(t) = B(0) + at², wobei B(0) den Anfangsbestand darstellt. Bei quadratischem Wachstum verändert sich die Steigung proportional zur Zeit, was quadratisches Wachstum einfach erklärt von linearem Wachstum unterscheidet.

Wie unterscheidet sich quadratisches von exponentiellem Wachstum?

Beim quadratischen Wachstum nimmt der Bestand mit dem Quadrat der Zeit zu (B(t) = B(0) + at²), während beim exponentiellen Wachstum der Bestand sich in gleichen Zeitabständen vervielfacht. Der Hauptunterschied liegt in der Geschwindigkeit: Quadratisches Wachstum vs exponentielles Wachstum zeigt, dass exponentielles Wachstum langfristig immer schneller wird. Bei Wachstum linear quadratisch exponentiell Aufgaben siehst du, dass quadratisches Wachstum eine mittlere Geschwindigkeit zwischen linearem und exponentiellem Wachstum darstellt.

Was ist ein Beispiel für quadratisches Wachstum im Alltag?

Ein typisches Quadratisches Wachstum Beispiel Alltag ist die zurückgelegte Strecke eines frei fallenden Objekts, die mit dem Quadrat der Zeit zunimmt. Auch die Fläche eines wachsenden Quadrats nimmt quadratisch zu, wenn seine Seitenlänge linear wächst. Studyflix erklärt, dass quadratisches Wachstum auch beim Anstieg von Wassermengen in Behältern mit sich verbreiternden Wänden auftritt oder bei der Ausbreitung von Ölflecken auf Wasseroberflächen zu beobachten ist.

Wann würde man kubisches statt quadratisches Wachstum verwenden?

Kubisches Wachstum würdest du verwenden, wenn ein Prozess mit der dritten Potenz der Zeit zunimmt, was durch die Formel B(t) = B(0) + at³ beschrieben wird. Kubisches Wachstum eignet sich besonders gut, wenn du Volumenwachstum modellieren möchtest, wie etwa bei einem würfelförmigen Objekt, dessen Kantenlänge linear zunimmt. Im Vergleich zum quadratischen Wachstum ist kubisches Wachstum noch schneller und zeigt typischerweise eine S-förmige Kurve mit langsamerem Anfang und Ende, aber raschem Wachstum in der Mitte.

Weitere Quellen

  1. Mathematik heute 9/10: Wachstumsprozesse und Funktionen, Lehrbuch, Eine schülerfreundliche Einführung zu linearem, quadratischem und exponentiellem Wachstum mit Alltagsbeispielen - Link

  2. Lambacher Schweizer Mathematik 9: Wachstumsmodelle verstehen, Schulbuch, Enthält ausführliche Erklärungen und Übungsaufgaben zu verschiedenen Wachstumsarten - Link

  3. PONS Power-Wissen Mathematik: Funktionen und Wachstumsprozesse, Lernhilfe, Kompakte Darstellung von linearem, quadratischem, kubischem und logistischem Wachstum mit Übungsaufgaben - Link

  4. Fit fürs Abi: Mathematik Wachstumsprozesse, Trainingsbuch, Übersichtliche Zusammenfassung und Übungen zu allen Wachstumsarten für Oberstufenschüler - Link

Vertiefe dein Wissen

  1. Erstelle eine digitale Infografik, die die Unterschiede zwischen linearem, quadratischem und exponentiellem Wachstum anhand von Alltagsbeispielen visualisiert (z.B. Wachstum einer Pflanze, Ausbreitung einer Viruserkrankung, Sparguthaben).

  2. Führe ein kleines Experiment durch: Lasse einen Ball aus unterschiedlichen Höhen fallen und messe die Zeit bis zum Aufprall. Stelle die Ergebnisse grafisch dar und untersuche, ob es sich um quadratisches Wachstum handelt.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Schüler:innen lieben uns — und du wirst es auch.

4.9/5

App Store

4.8/5

Google Play

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Wir dachten, du würdest nie fragen...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist speziell auf die Bedürfnisse von Schülern zugeschnitten. Basierend auf den Millionen von Inhalten, die wir auf der Plattform haben, können wir den Schülern wirklich sinnvolle und relevante Antworten geben. Aber es geht nicht nur um Antworten, sondern der Begleiter führt die Schüler auch durch ihre täglichen Lernherausforderungen, mit personalisierten Lernplänen, Quizfragen oder Inhalten im Chat und einer 100% Personalisierung basierend auf den Fähigkeiten und Entwicklungen der Schüler.

Wo kann ich mir die Knowunity-App herunterladen?

Du kannst dir die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Ja, du hast kostenlosen Zugriff auf Inhalte in der App und auf unseren KI-Begleiter. Zum Freischalten bestimmter Features in der App kannst du Knowunity Pro erwerben.