Bestimmung der Parameter p und k
Bei der Bestimmung des Parameters p fragst du: "Wie groß muss die Trefferwahrscheinlichkeit sein?" Beispiel: Ein Schokolinsenhersteller will, dass mit 80% Wahrscheinlichkeit mindestens 30 von 124 Linsen grün sind. Stelle P(X≥30) ≥ 0,8 um zu P(X≤29) ≤ 0,2 und teste verschiedene p-Werte mit dem Taschenrechner.
Bei der Bestimmung des Parameters k (Mindestanzahl Treffer) fragst du: "Wie viele Treffer benötige ich mindestens?" Beispiel: In einer Quizshow mit 10 Fragen und je 4 Antwortmöglichkeiten soll die Chance, durch Raten zu gewinnen, höchstens 5% betragen. Formuliere P(X≥k) ≤ 0,05 um zu P(X≤k-1) ≥ 0,95. Mit dem Taschenrechner findest du k-1=5, also k=6 – der Kandidat muss mindestens 6 richtige Antworten haben.
Diese Aufgabentypen sind klassische Baumdiagramm Aufgaben für das Abitur und erscheinen regelmäßig in Prüfungen. Die Lösungsstrategie ist immer ähnlich: Formuliere die Ungleichung, forme sie um und teste systematisch mit dem Taschenrechner.
🧮 Prüfungstipp: Bei Parameterbestimmungen in der Binomialverteilung hilft eine klare Umformungsstrategie – wandle die Aufgabe immer in die Form P(X≤...) um und nutze dann die kumulierte Binomialverteilung am Taschenrechner!