Fächer

Fächer

Mehr

Trigonometrie einfach erklärt: Wann und wie lernt man Sinus, Kosinus und Tangens?

Öffnen

Trigonometrie einfach erklärt: Wann und wie lernt man Sinus, Kosinus und Tangens?
user profile picture

annalena 💫

@annalena_rpr

·

250 Follower

Follow

Trigonometrie ist ein wichtiger Bereich der Mathematik, der sich mit den Beziehungen zwischen Winkeln und Seiten in Dreiecken befasst. Wann lernt man Trigonometrie? Üblicherweise wird sie in der Oberstufe eingeführt. Diese Zusammenfassung erklärt grundlegende Konzepte, Formeln und Anwendungen der Trigonometrie.

  • Einführung in trigonometrische Funktionen: Sinus, Cosinus und Tangens
  • Erklärung des Einheitskreises und seiner Bedeutung für die Trigonometrie
  • Darstellung des Sinussatzes und seiner Anwendungen
  • Überblick über wichtige trigonometrische Gleichungen und Zusammenhänge

29.1.2021

1457

Trigonometrie
Gleichungen 90 winkel:
B
Sinus (2) 9
h
Cosinus (2) = n
• tangens Q) = a
-
9
U
Zusammenhange
= sin(a) = cos (90-2)
COS (2) = Si

Öffnen

Trigonometric Equations and Relationships

This page provides a comprehensive overview of trigonometric equations and relationships, serving as a quick reference guide for students studying trigonometry. It covers the basic trigonometric ratios, their relationships, and applications in both right-angled and non-right-angled triangles.

The page begins by reiterating the fundamental trigonometric ratios for a right-angled triangle:

Definition:

  • Sine (sin) = Opposite / Hypotenuse
  • Cosine (cos) = Adjacent / Hypotenuse
  • Tangent (tan) = Opposite / Adjacent

These ratios are essential for understanding Was ist die Trigonometrie einfach erklärt? and form the basis for more complex trigonometric calculations.

The page then presents key trigonometric relationships:

Highlight: Important trigonometric relationships include:

  • sin(α) = cos(90°-α)
  • cos(α) = sin(90°-α)
  • tan(α) = sin(α) / cos(α)
  • sin²(α) + cos²(α) = 1

These relationships are crucial for Trigonometrie Formeln and solving various trigonometric problems.

The concept of inverse trigonometric functions is introduced:

Vocabulary: Inverse trigonometric functions (arcsin, arccos, arctan) are used to find angles when given trigonometric ratios. They are essential for Sinus Winkel berechnen Taschenrechner.

The page also covers the application of trigonometry in different types of triangles:

  1. Right-angled triangles: Using basic trigonometric ratios.
  2. Isosceles triangles: Applying symmetry properties along with trigonometric ratios.
  3. General triangles: Utilizing the Sine Law and Cosine Law.

Example: To find an unknown side in a right-angled triangle: If angle A = 30° and the hypotenuse c = 10 cm, then the opposite side a can be calculated as: a = c * sin(A) = 10 * sin(30°) = 5 cm

This example demonstrates how to apply trigonometric ratios in practical problem-solving, which is essential for Gegenkathete berechnen mit Winkel und Hypotenuse.

The page concludes by emphasizing the importance of practice in mastering trigonometry:

Quote: "Trigonometry is not just about memorizing formulas, but understanding their applications in real-world scenarios."

This statement underscores the practical significance of trigonometry and encourages students to explore its applications beyond theoretical concepts.

Trigonometrie
Gleichungen 90 winkel:
B
Sinus (2) 9
h
Cosinus (2) = n
• tangens Q) = a
-
9
U
Zusammenhange
= sin(a) = cos (90-2)
COS (2) = Si

Öffnen

The Sine Law (Sinussatz)

This page delves into the Sine Law, a fundamental theorem in trigonometry that relates the sides of a triangle to the sines of its angles. The Sine Law is particularly useful for solving problems involving non-right triangles.

The page begins by stating the Sine Law:

Definition: The Sine Law states that for any triangle ABC with sides a, b, and c opposite to angles A, B, and C respectively:

a / sin(A) = b / sin(B) = c / sin(C)

This law is crucial for Sinussatz Kosinussatz Aufgaben pdf and is widely used in various trigonometric applications.

The page then provides a visual representation of a triangle with labeled sides and angles to illustrate the Sine Law. It emphasizes that the Sine Law does not require a right angle in the triangle, making it more versatile than basic trigonometric ratios.

Highlight: The Sine Law can be applied to any triangle, not just right-angled triangles. This makes it a powerful tool for solving a wide range of trigonometric problems.

The derivation of the Sine Law is then presented:

  1. The law is derived by considering the altitude (height) of the triangle from each vertex.
  2. The area of the triangle is expressed in terms of this altitude and the base for each side.
  3. By equating these area expressions, the Sine Law is obtained.

Example: In a triangle ABC, if a = 5, A = 30°, and B = 45°, we can use the Sine Law to find side b: 5 / sin(30°) = b / sin(45°)

This example demonstrates how the Sinussatz Rechner can be used to solve practical problems.

The page concludes by emphasizing the importance of the Sine Law in trigonometry:

Quote: "In every triangle, the ratio of a side length to the sine of the opposite angle is constant."

This principle forms the basis of the Sine Law and is essential for understanding its applications in Sinussatz Kosinussatz Formel and related trigonometric concepts.

Trigonometrie
Gleichungen 90 winkel:
B
Sinus (2) 9
h
Cosinus (2) = n
• tangens Q) = a
-
9
U
Zusammenhange
= sin(a) = cos (90-2)
COS (2) = Si

Öffnen

Trigonometric Equations and Relationships

This page introduces fundamental trigonometric equations and relationships, focusing on right-angled triangles and the unit circle. It covers the basic trigonometric ratios and their interconnections.

The page begins by presenting the primary trigonometric ratios for a right-angled triangle:

Definition:

  • Sine (sin) of an angle is the ratio of the opposite side to the hypotenuse.
  • Cosine (cos) of an angle is the ratio of the adjacent side to the hypotenuse.
  • Tangent (tan) of an angle is the ratio of the opposite side to the adjacent side.

These ratios are crucial for Wie berechne ich die Trigonometrie? and form the foundation for more complex trigonometric calculations.

The page then explores the relationships between these ratios:

Highlight: Important trigonometric relationships include:

  • sin(α) = cos(90°-α)
  • cos(α) = sin(90°-α)
  • tan(α) = sin(α) / cos(α)

These relationships are vital for solving trigonometrische Gleichungen lösen and understanding the interconnections between different trigonometric functions.

An example is provided to illustrate the application of these concepts:

Example: sin(30°) = 1/2

The unit circle is introduced as a powerful tool for visualizing trigonometric functions:

Vocabulary: The unit circle is a circle with a radius of 1 centered at the origin of a coordinate system. It's used to define trigonometric functions for all angle values.

Key points about the unit circle include:

  • sin(0°) = 0, sin(90°) = 1, sin(180°) = 0
  • cos(0°) = 1, cos(90°) = 0, cos(180°) = -1

The page concludes with the fundamental trigonometric identity:

Highlight: sin²(α) + cos²(α) = 1

This identity is essential for Trigonometrie Formelsammlung pdf and is used extensively in trigonometric problem-solving.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Trigonometrie einfach erklärt: Wann und wie lernt man Sinus, Kosinus und Tangens?

user profile picture

annalena 💫

@annalena_rpr

·

250 Follower

Follow

Trigonometrie ist ein wichtiger Bereich der Mathematik, der sich mit den Beziehungen zwischen Winkeln und Seiten in Dreiecken befasst. Wann lernt man Trigonometrie? Üblicherweise wird sie in der Oberstufe eingeführt. Diese Zusammenfassung erklärt grundlegende Konzepte, Formeln und Anwendungen der Trigonometrie.

  • Einführung in trigonometrische Funktionen: Sinus, Cosinus und Tangens
  • Erklärung des Einheitskreises und seiner Bedeutung für die Trigonometrie
  • Darstellung des Sinussatzes und seiner Anwendungen
  • Überblick über wichtige trigonometrische Gleichungen und Zusammenhänge

29.1.2021

1457

 

10

 

Mathe

42

Trigonometrie
Gleichungen 90 winkel:
B
Sinus (2) 9
h
Cosinus (2) = n
• tangens Q) = a
-
9
U
Zusammenhange
= sin(a) = cos (90-2)
COS (2) = Si

Trigonometric Equations and Relationships

This page provides a comprehensive overview of trigonometric equations and relationships, serving as a quick reference guide for students studying trigonometry. It covers the basic trigonometric ratios, their relationships, and applications in both right-angled and non-right-angled triangles.

The page begins by reiterating the fundamental trigonometric ratios for a right-angled triangle:

Definition:

  • Sine (sin) = Opposite / Hypotenuse
  • Cosine (cos) = Adjacent / Hypotenuse
  • Tangent (tan) = Opposite / Adjacent

These ratios are essential for understanding Was ist die Trigonometrie einfach erklärt? and form the basis for more complex trigonometric calculations.

The page then presents key trigonometric relationships:

Highlight: Important trigonometric relationships include:

  • sin(α) = cos(90°-α)
  • cos(α) = sin(90°-α)
  • tan(α) = sin(α) / cos(α)
  • sin²(α) + cos²(α) = 1

These relationships are crucial for Trigonometrie Formeln and solving various trigonometric problems.

The concept of inverse trigonometric functions is introduced:

Vocabulary: Inverse trigonometric functions (arcsin, arccos, arctan) are used to find angles when given trigonometric ratios. They are essential for Sinus Winkel berechnen Taschenrechner.

The page also covers the application of trigonometry in different types of triangles:

  1. Right-angled triangles: Using basic trigonometric ratios.
  2. Isosceles triangles: Applying symmetry properties along with trigonometric ratios.
  3. General triangles: Utilizing the Sine Law and Cosine Law.

Example: To find an unknown side in a right-angled triangle: If angle A = 30° and the hypotenuse c = 10 cm, then the opposite side a can be calculated as: a = c * sin(A) = 10 * sin(30°) = 5 cm

This example demonstrates how to apply trigonometric ratios in practical problem-solving, which is essential for Gegenkathete berechnen mit Winkel und Hypotenuse.

The page concludes by emphasizing the importance of practice in mastering trigonometry:

Quote: "Trigonometry is not just about memorizing formulas, but understanding their applications in real-world scenarios."

This statement underscores the practical significance of trigonometry and encourages students to explore its applications beyond theoretical concepts.

Trigonometrie
Gleichungen 90 winkel:
B
Sinus (2) 9
h
Cosinus (2) = n
• tangens Q) = a
-
9
U
Zusammenhange
= sin(a) = cos (90-2)
COS (2) = Si

The Sine Law (Sinussatz)

This page delves into the Sine Law, a fundamental theorem in trigonometry that relates the sides of a triangle to the sines of its angles. The Sine Law is particularly useful for solving problems involving non-right triangles.

The page begins by stating the Sine Law:

Definition: The Sine Law states that for any triangle ABC with sides a, b, and c opposite to angles A, B, and C respectively:

a / sin(A) = b / sin(B) = c / sin(C)

This law is crucial for Sinussatz Kosinussatz Aufgaben pdf and is widely used in various trigonometric applications.

The page then provides a visual representation of a triangle with labeled sides and angles to illustrate the Sine Law. It emphasizes that the Sine Law does not require a right angle in the triangle, making it more versatile than basic trigonometric ratios.

Highlight: The Sine Law can be applied to any triangle, not just right-angled triangles. This makes it a powerful tool for solving a wide range of trigonometric problems.

The derivation of the Sine Law is then presented:

  1. The law is derived by considering the altitude (height) of the triangle from each vertex.
  2. The area of the triangle is expressed in terms of this altitude and the base for each side.
  3. By equating these area expressions, the Sine Law is obtained.

Example: In a triangle ABC, if a = 5, A = 30°, and B = 45°, we can use the Sine Law to find side b: 5 / sin(30°) = b / sin(45°)

This example demonstrates how the Sinussatz Rechner can be used to solve practical problems.

The page concludes by emphasizing the importance of the Sine Law in trigonometry:

Quote: "In every triangle, the ratio of a side length to the sine of the opposite angle is constant."

This principle forms the basis of the Sine Law and is essential for understanding its applications in Sinussatz Kosinussatz Formel and related trigonometric concepts.

Trigonometrie
Gleichungen 90 winkel:
B
Sinus (2) 9
h
Cosinus (2) = n
• tangens Q) = a
-
9
U
Zusammenhange
= sin(a) = cos (90-2)
COS (2) = Si

Trigonometric Equations and Relationships

This page introduces fundamental trigonometric equations and relationships, focusing on right-angled triangles and the unit circle. It covers the basic trigonometric ratios and their interconnections.

The page begins by presenting the primary trigonometric ratios for a right-angled triangle:

Definition:

  • Sine (sin) of an angle is the ratio of the opposite side to the hypotenuse.
  • Cosine (cos) of an angle is the ratio of the adjacent side to the hypotenuse.
  • Tangent (tan) of an angle is the ratio of the opposite side to the adjacent side.

These ratios are crucial for Wie berechne ich die Trigonometrie? and form the foundation for more complex trigonometric calculations.

The page then explores the relationships between these ratios:

Highlight: Important trigonometric relationships include:

  • sin(α) = cos(90°-α)
  • cos(α) = sin(90°-α)
  • tan(α) = sin(α) / cos(α)

These relationships are vital for solving trigonometrische Gleichungen lösen and understanding the interconnections between different trigonometric functions.

An example is provided to illustrate the application of these concepts:

Example: sin(30°) = 1/2

The unit circle is introduced as a powerful tool for visualizing trigonometric functions:

Vocabulary: The unit circle is a circle with a radius of 1 centered at the origin of a coordinate system. It's used to define trigonometric functions for all angle values.

Key points about the unit circle include:

  • sin(0°) = 0, sin(90°) = 1, sin(180°) = 0
  • cos(0°) = 1, cos(90°) = 0, cos(180°) = -1

The page concludes with the fundamental trigonometric identity:

Highlight: sin²(α) + cos²(α) = 1

This identity is essential for Trigonometrie Formelsammlung pdf and is used extensively in trigonometric problem-solving.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.