Fächer

Fächer

Mehr

Fette und Fettsäuren: Veresterung und Hydrolyse leicht erklärt

Öffnen

Fette und Fettsäuren: Veresterung und Hydrolyse leicht erklärt
user profile picture

Ana

@ani_wttk

·

124 Follower

Follow

Fats and lipids play a crucial role in our bodies and diet. This comprehensive guide explores their structure, properties, and reactions, with a focus on fatty acids and esterification processes.

• Fats are hydrophobic compounds composed of saturated and unsaturated fatty acids
• Unsaturated fatty acids contain double bonds that can undergo addition reactions
• Essential fatty acids like omega-3s are vital for health but must be obtained through diet
• Esterification and hydrolysis are key reactions in fat metabolism and industrial processes
• Analytical techniques like bromine tests can detect unsaturated fatty acids

21.6.2022

7304

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Esterification Mechanism: Formation of Fats

This page details the esterification mechanism, which is the process by which fats are formed from fatty acids and glycerol. The reaction is catalyzed by sulfuric acid and proceeds through four main steps.

Highlight: The esterification mechanism involves four key steps: protonation, nucleophilic attack, proton transfer, and deprotonation.

  1. Protonation of the carboxyl group: The acid catalyst protonates the oxygen of the carboxyl group, making it more electrophilic.

  2. Nucleophilic attack: The alcohol (glycerol) attacks the protonated carboxyl group, forming a tetrahedral intermediate.

  3. Proton transfer: A proton is transferred within the intermediate, leading to the formation of water as a leaving group.

  4. Deprotonation: The final step involves the loss of a proton, resulting in the formation of the ester (fat) molecule.

Vocabulary: Electrophilic - Attracted to electrons; tends to accept electrons in chemical reactions.

The page includes detailed reaction mechanisms for each step, illustrating the movement of electrons and the formation/breaking of bonds.

Example: In the first step, H2SO4 donates a proton to the carboxyl group, forming a resonance-stabilized carbocation.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Esterification Mechanism: Continued

This page continues the explanation of the esterification mechanism, focusing on the later steps of the reaction. It provides detailed diagrams showing the electron movements and bond changes during each step.

The third step involves a proton transfer within the molecule. This rearrangement leads to the formation of a water molecule as a leaving group.

Highlight: The formation of water as a leaving group is a crucial step in the esterification process, driving the reaction forward.

In the final step, deprotonation occurs, resulting in the formation of the ester (fat) molecule. This step completes the esterification process.

Definition: Deprotonation - The removal of a proton (H+) from a molecule, resulting in its conjugate base.

The page also briefly discusses the solubility of fats in water. Fats are hydrophobic due to their non-polar nature and the weak intermolecular forces (van der Waals) between fat molecules.

Example: Oil floating on water demonstrates the hydrophobic nature of fats and their lower density compared to water.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Fats and Lipids: Structure and Properties

This page provides an overview of fats and lipids, focusing on their chemical structure and properties.

Fats and lipids are hydrophobic compounds found in various sources like oils, butter, and animal tissues. They are composed of fatty acids, which can be saturated or unsaturated. Saturated fatty acids have no double bonds and are typically solid at room temperature, while unsaturated fatty acids contain one or more double bonds and are usually liquid.

Vocabulary: Hydrophobic - Repelled by water; not mixing with or dissolving in water.

The page includes a table listing common fatty acids, their chemical formulas, melting points, and sources. For example:

Example: Stearic acid (C17H35COOH) is a saturated fatty acid with a melting point of 69°C, commonly found in beef tallow.

Highlight: Essential fatty acids, which cannot be synthesized by the body and must be obtained through diet, are crucial for various physiological functions.

The chemical structure of fatty acids affects their properties, including melting point and reactivity. Unsaturated fatty acids can undergo addition reactions due to their double bonds.

Definition: Addition reaction - A chemical reaction where two or more molecules combine to form a larger molecule.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Saponification of Fats: Practical Aspects

This page focuses on the practical aspects of the saponification of fats, providing details on the experimental procedure and the products formed.

The saponification reaction involves heating a mixture of fat and sodium hydroxide solution. Key points include:

  1. Use of a boiling stone to prevent superheating and ensure even boiling
  2. Heating the mixture for about 5 minutes
  3. Caution against overheating to prevent the mixture from boiling over

Highlight: The Verseifung von Fetten (saponification of fats) produces glycerol and the sodium salts of fatty acids, which are the main components of soap.

The products of the reaction are described:

  1. Glycerol (1,2,3-propanetriol) - the alcohol component of the original fat
  2. Sodium salts of fatty acids - the soap molecules

Definition: Saponification - The hydrolysis of fats or oils under basic conditions, producing glycerol and fatty acid salts (soaps).

The page includes structural formulas for the reactants and products, illustrating the conversion of triglycerides into glycerol and soap molecules.

Example: The saponification of a fat containing palmitic, stearic, and oleic acids would produce sodium palmitate, sodium stearate, and sodium oleate, respectively.

The ionic nature of the soap molecules, with their polar heads and non-polar tails, is crucial for their cleaning action in water.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Reaction Mechanism of Saponification

This page provides a detailed look at the reaction mechanism of saponification, focusing on the step-by-step process of breaking down a fat molecule into glycerol and soap.

The mechanism is illustrated with structural formulas showing the movement of electrons and the breaking and forming of bonds. Key steps include:

  1. Nucleophilic attack by the hydroxide ion on the carbonyl carbon
  2. Formation of a tetrahedral intermediate
  3. Elimination of the alkoxide leaving group
  4. Deprotonation to form the carboxylate anion (soap molecule)

Highlight: The alkalische Hydrolyse Mechanismus (alkaline hydrolysis mechanism) of fats is a nucleophilic acyl substitution reaction.

The page also includes information on naming conventions for the salts produced in the reaction:

Vocabulary: Nomenclature of soap salts: sodium palmitate, sodium stearate, sodium oleate, etc.

The structural formulas of the fatty acid components (palmitic acid, stearic acid, oleic acid) and their corresponding sodium salts are provided.

Example: Sodium palmitate (C15H31COONa) is the sodium salt of palmitic acid (C15H31COOH), formed during the saponification of fats containing this fatty acid.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Detection of Unsaturated Fatty Acids: Detailed Mechanism

This page provides an in-depth look at the mechanism of detecting unsaturated fatty acids using the bromine test. It emphasizes the importance of performing this test in a fume hood due to the strong odor.

The reaction involves the addition of bromine to carbon-carbon double bonds in unsaturated fatty acids. The orange-yellow color of bromine disappears as it reacts with the double bonds.

Highlight: The Nachweis ungesättigte Fettsäuren (detection of unsaturated fatty acids) is based on the principle of electrophilic addition.

The mechanism is broken down into several steps:

  1. Polarization of the bromine molecule due to the high electron density at the double bond
  2. Formation of a bromonium ion intermediate
  3. Nucleophilic attack by the bromide ion to form the final product

Vocabulary: Bromonium ion - A cyclic, positively charged intermediate formed during the addition of bromine to an alkene.

The page includes detailed diagrams showing the electron movements and formation of intermediates during the reaction.

Example: In the first step, the π electrons of the double bond attack the slightly positive end of the polarized bromine molecule, forming a bromonium ion.

The test can be used quantitatively by adding bromine until the color no longer disappears, allowing for the determination of the number of double bonds present in the fat sample.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Hydrolysis and Saponification of Fats

This page discusses the hydrolysis and saponification of fats, which are important processes in both biological systems and industrial applications.

Hydrolysis is the breakdown of fats into their component parts: glycerol and fatty acids. Saponification is a specific type of hydrolysis that uses a strong base (usually sodium hydroxide) to produce soap.

Definition: Saponification - The process of converting fat or oil into soap by treatment with alkali.

The reaction procedure is described:

  1. Mix 2 mL of fat with 5 mL of sodium hydroxide solution
  2. Heat the mixture for about 5 minutes (with caution to prevent overflowing)
  3. Add 100 mL of water

Highlight: The Verseifung von Fetten (saponification of fats) produces glycerol and the sodium salts of fatty acids, which are the main components of soap.

The page includes a reaction equation showing the conversion of a triglyceride (fat) into glycerol and sodium palmitate (a soap molecule).

Example: The saponification of a fat containing palmitic acid would produce sodium palmitate (C15H31COONa), a common soap component.

The ionic nature of the soap molecule, with its polar head and non-polar tail, is crucial for its cleaning action.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Detection of Unsaturated Fatty Acids

This page describes the method for detecting unsaturated fatty acids using bromine water. This test is based on the addition reaction between bromine and carbon-carbon double bonds.

The procedure involves adding about 1 cm of fat to 2 cm of bromine water. If unsaturated fatty acids are present, the bromine will react, causing the orange-yellow color to disappear.

Highlight: The Nachweis von ungesättigten Fettsäuren mit Brom (detection of unsaturated fatty acids with bromine) is a key analytical technique in lipid chemistry.

The page includes a detailed reaction mechanism for the electrophilic addition of bromine to a carbon-carbon double bond. This process involves:

  1. Polarization of the bromine molecule
  2. Formation of a bromonium ion intermediate
  3. Nucleophilic attack by the bromide ion

Vocabulary: Bromonium ion - A cyclic, positively charged intermediate formed during the addition of bromine to an alkene.

The page also provides information on calculating the degree of unsaturation based on the amount of bromine consumed in the reaction.

Example: By titrating with bromine until the color no longer disappears, one can determine the number of double bonds present in a fat sample.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Öffnen

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Fette und Fettsäuren: Veresterung und Hydrolyse leicht erklärt

user profile picture

Ana

@ani_wttk

·

124 Follower

Follow

Fats and lipids play a crucial role in our bodies and diet. This comprehensive guide explores their structure, properties, and reactions, with a focus on fatty acids and esterification processes.

• Fats are hydrophobic compounds composed of saturated and unsaturated fatty acids
• Unsaturated fatty acids contain double bonds that can undergo addition reactions
• Essential fatty acids like omega-3s are vital for health but must be obtained through diet
• Esterification and hydrolysis are key reactions in fat metabolism and industrial processes
• Analytical techniques like bromine tests can detect unsaturated fatty acids

21.6.2022

7304

 

11/12

 

Chemie

144

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Esterification Mechanism: Formation of Fats

This page details the esterification mechanism, which is the process by which fats are formed from fatty acids and glycerol. The reaction is catalyzed by sulfuric acid and proceeds through four main steps.

Highlight: The esterification mechanism involves four key steps: protonation, nucleophilic attack, proton transfer, and deprotonation.

  1. Protonation of the carboxyl group: The acid catalyst protonates the oxygen of the carboxyl group, making it more electrophilic.

  2. Nucleophilic attack: The alcohol (glycerol) attacks the protonated carboxyl group, forming a tetrahedral intermediate.

  3. Proton transfer: A proton is transferred within the intermediate, leading to the formation of water as a leaving group.

  4. Deprotonation: The final step involves the loss of a proton, resulting in the formation of the ester (fat) molecule.

Vocabulary: Electrophilic - Attracted to electrons; tends to accept electrons in chemical reactions.

The page includes detailed reaction mechanisms for each step, illustrating the movement of electrons and the formation/breaking of bonds.

Example: In the first step, H2SO4 donates a proton to the carboxyl group, forming a resonance-stabilized carbocation.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Esterification Mechanism: Continued

This page continues the explanation of the esterification mechanism, focusing on the later steps of the reaction. It provides detailed diagrams showing the electron movements and bond changes during each step.

The third step involves a proton transfer within the molecule. This rearrangement leads to the formation of a water molecule as a leaving group.

Highlight: The formation of water as a leaving group is a crucial step in the esterification process, driving the reaction forward.

In the final step, deprotonation occurs, resulting in the formation of the ester (fat) molecule. This step completes the esterification process.

Definition: Deprotonation - The removal of a proton (H+) from a molecule, resulting in its conjugate base.

The page also briefly discusses the solubility of fats in water. Fats are hydrophobic due to their non-polar nature and the weak intermolecular forces (van der Waals) between fat molecules.

Example: Oil floating on water demonstrates the hydrophobic nature of fats and their lower density compared to water.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Fats and Lipids: Structure and Properties

This page provides an overview of fats and lipids, focusing on their chemical structure and properties.

Fats and lipids are hydrophobic compounds found in various sources like oils, butter, and animal tissues. They are composed of fatty acids, which can be saturated or unsaturated. Saturated fatty acids have no double bonds and are typically solid at room temperature, while unsaturated fatty acids contain one or more double bonds and are usually liquid.

Vocabulary: Hydrophobic - Repelled by water; not mixing with or dissolving in water.

The page includes a table listing common fatty acids, their chemical formulas, melting points, and sources. For example:

Example: Stearic acid (C17H35COOH) is a saturated fatty acid with a melting point of 69°C, commonly found in beef tallow.

Highlight: Essential fatty acids, which cannot be synthesized by the body and must be obtained through diet, are crucial for various physiological functions.

The chemical structure of fatty acids affects their properties, including melting point and reactivity. Unsaturated fatty acids can undergo addition reactions due to their double bonds.

Definition: Addition reaction - A chemical reaction where two or more molecules combine to form a larger molecule.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Saponification of Fats: Practical Aspects

This page focuses on the practical aspects of the saponification of fats, providing details on the experimental procedure and the products formed.

The saponification reaction involves heating a mixture of fat and sodium hydroxide solution. Key points include:

  1. Use of a boiling stone to prevent superheating and ensure even boiling
  2. Heating the mixture for about 5 minutes
  3. Caution against overheating to prevent the mixture from boiling over

Highlight: The Verseifung von Fetten (saponification of fats) produces glycerol and the sodium salts of fatty acids, which are the main components of soap.

The products of the reaction are described:

  1. Glycerol (1,2,3-propanetriol) - the alcohol component of the original fat
  2. Sodium salts of fatty acids - the soap molecules

Definition: Saponification - The hydrolysis of fats or oils under basic conditions, producing glycerol and fatty acid salts (soaps).

The page includes structural formulas for the reactants and products, illustrating the conversion of triglycerides into glycerol and soap molecules.

Example: The saponification of a fat containing palmitic, stearic, and oleic acids would produce sodium palmitate, sodium stearate, and sodium oleate, respectively.

The ionic nature of the soap molecules, with their polar heads and non-polar tails, is crucial for their cleaning action in water.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Reaction Mechanism of Saponification

This page provides a detailed look at the reaction mechanism of saponification, focusing on the step-by-step process of breaking down a fat molecule into glycerol and soap.

The mechanism is illustrated with structural formulas showing the movement of electrons and the breaking and forming of bonds. Key steps include:

  1. Nucleophilic attack by the hydroxide ion on the carbonyl carbon
  2. Formation of a tetrahedral intermediate
  3. Elimination of the alkoxide leaving group
  4. Deprotonation to form the carboxylate anion (soap molecule)

Highlight: The alkalische Hydrolyse Mechanismus (alkaline hydrolysis mechanism) of fats is a nucleophilic acyl substitution reaction.

The page also includes information on naming conventions for the salts produced in the reaction:

Vocabulary: Nomenclature of soap salts: sodium palmitate, sodium stearate, sodium oleate, etc.

The structural formulas of the fatty acid components (palmitic acid, stearic acid, oleic acid) and their corresponding sodium salts are provided.

Example: Sodium palmitate (C15H31COONa) is the sodium salt of palmitic acid (C15H31COOH), formed during the saponification of fats containing this fatty acid.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Detection of Unsaturated Fatty Acids: Detailed Mechanism

This page provides an in-depth look at the mechanism of detecting unsaturated fatty acids using the bromine test. It emphasizes the importance of performing this test in a fume hood due to the strong odor.

The reaction involves the addition of bromine to carbon-carbon double bonds in unsaturated fatty acids. The orange-yellow color of bromine disappears as it reacts with the double bonds.

Highlight: The Nachweis ungesättigte Fettsäuren (detection of unsaturated fatty acids) is based on the principle of electrophilic addition.

The mechanism is broken down into several steps:

  1. Polarization of the bromine molecule due to the high electron density at the double bond
  2. Formation of a bromonium ion intermediate
  3. Nucleophilic attack by the bromide ion to form the final product

Vocabulary: Bromonium ion - A cyclic, positively charged intermediate formed during the addition of bromine to an alkene.

The page includes detailed diagrams showing the electron movements and formation of intermediates during the reaction.

Example: In the first step, the π electrons of the double bond attack the slightly positive end of the polarized bromine molecule, forming a bromonium ion.

The test can be used quantitatively by adding bromine until the color no longer disappears, allowing for the determination of the number of double bonds present in the fat sample.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Hydrolysis and Saponification of Fats

This page discusses the hydrolysis and saponification of fats, which are important processes in both biological systems and industrial applications.

Hydrolysis is the breakdown of fats into their component parts: glycerol and fatty acids. Saponification is a specific type of hydrolysis that uses a strong base (usually sodium hydroxide) to produce soap.

Definition: Saponification - The process of converting fat or oil into soap by treatment with alkali.

The reaction procedure is described:

  1. Mix 2 mL of fat with 5 mL of sodium hydroxide solution
  2. Heat the mixture for about 5 minutes (with caution to prevent overflowing)
  3. Add 100 mL of water

Highlight: The Verseifung von Fetten (saponification of fats) produces glycerol and the sodium salts of fatty acids, which are the main components of soap.

The page includes a reaction equation showing the conversion of a triglyceride (fat) into glycerol and sodium palmitate (a soap molecule).

Example: The saponification of a fat containing palmitic acid would produce sodium palmitate (C15H31COONa), a common soap component.

The ionic nature of the soap molecule, with its polar head and non-polar tail, is crucial for its cleaning action.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Detection of Unsaturated Fatty Acids

This page describes the method for detecting unsaturated fatty acids using bromine water. This test is based on the addition reaction between bromine and carbon-carbon double bonds.

The procedure involves adding about 1 cm of fat to 2 cm of bromine water. If unsaturated fatty acids are present, the bromine will react, causing the orange-yellow color to disappear.

Highlight: The Nachweis von ungesättigten Fettsäuren mit Brom (detection of unsaturated fatty acids with bromine) is a key analytical technique in lipid chemistry.

The page includes a detailed reaction mechanism for the electrophilic addition of bromine to a carbon-carbon double bond. This process involves:

  1. Polarization of the bromine molecule
  2. Formation of a bromonium ion intermediate
  3. Nucleophilic attack by the bromide ion

Vocabulary: Bromonium ion - A cyclic, positively charged intermediate formed during the addition of bromine to an alkene.

The page also provides information on calculating the degree of unsaturation based on the amount of bromine consumed in the reaction.

Example: By titrating with bromine until the color no longer disappears, one can determine the number of double bonds present in a fat sample.

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Fette/Lipide
Ol, Butter, pflanzliche Fette, hydrophob, tierische Fette (Fette im Fleisch, Körperfettschicht,
(un) gesättigte Fette / Fettsäu

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Werde Teil der Community

Verbessere deine Noten

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.