App öffnen

Fächer

13.740

8. Feb. 2026

5 Seiten

Vektoren Zusammenfassung PDF Abitur - Grundlagen, Aufgaben und Lösungen

A

Angelina B.

@angelinab._b7a478

Vector Mathematics: A Comprehensive Guide- This detailed guide covers... Mehr anzeigen

Page 1
Page 2
Page 3
Page 4
Page 5
1 / 5
Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Längenberechnung und Mittelpunktbestimmung

Diese Seite behandelt die Berechnung der Länge von Vektoren und die Bestimmung von Mittelpunkten, was grundlegende Operationen in der Vektorrechnung sind.

Die Länge eines Vektors a = (a₁, a₂, a₃) wird durch die Formel |a| = √a12+a22+a32a₁² + a₂² + a₃² berechnet. Diese Formel leitet sich aus dem Satz des Pythagoras ab und ist entscheidend für viele Berechnungen in der Vektorgeometrie.

Beispiel: Für einen Vektor a = (3, 4, 12.5) beträgt die Länge |a| = √(3² + 4² + 12.5²) ≈ 13.5

Zur Bestimmung des Mittelpunkts zwischen zwei Punkten A und B wird der Vektor AB berechnet und halbiert. Der Mittelpunkt M ergibt sich dann aus M = A + ½AB.

Highlight: Die Mittelpunktformel lautet: M = ½A+BA + B

Die Seite führt auch in die Geradengleichung ein, die in der Parameterform x = OP + t · AB dargestellt wird, wobei OP der Ortsvektor eines Punktes auf der Geraden und AB der Richtungsvektor ist.

Diese Konzepte sind fundamental für das Verständnis der Vektorrechnung und bilden die Grundlage für komplexere Anwendungen in der analytischen Geometrie.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Ebenengleichungen und Kollinearität

Diese Seite behandelt zwei wichtige Konzepte der Vektorrechnung: Ebenengleichungen und die Kollinearität von Vektoren.

Die Ebenengleichung in Parameterform wird als E = P + r · u + s · v dargestellt, wobei P der Stützvektor und u und v die Richtungs- oder Spannvektoren sind. Eine wichtige Bedingung ist, dass u und v nicht kollinear sein dürfen.

Definition: Eine Ebene ist eine zweidimensionale Fläche im dreidimensionalen Raum.

Kollinearität von Vektoren ist ein zentrales Konzept in der Vektorrechnung. Zwei Vektoren a und b sind kollinear, wenn sie Vielfache voneinander sind, also wenn a = r · b für einen Skalar r gilt.

Beispiel: Die Vektoren a = (3, 6, 9) und b = (1, 2, 3) sind kollinear, da a = 3b.

Highlight: Kollineare Vektoren liegen auf derselben Geraden oder ihrer Verlängerung.

Die Überprüfung der Kollinearität ist wichtig für viele Anwendungen in der analytischen Geometrie, insbesondere bei der Untersuchung von Lagebeziehungen zwischen Geraden und Ebenen.

Diese Konzepte bilden eine wichtige Grundlage für fortgeschrittene Themen in der Vektorrechnung und sind essentiell für das Verständnis räumlicher Beziehungen in der Mathematik.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Lagebeziehungen von Geraden und Ebenen

Diese Seite behandelt die verschiedenen Lagebeziehungen zwischen Geraden sowie zwischen Geraden und Ebenen, ein zentrales Thema in der Vektorrechnung und analytischen Geometrie.

Für Geraden gibt es drei mögliche Lagebeziehungen:

  1. Parallel oder identisch: Die Richtungsvektoren sind kollinear abhängig.
  2. Schneidend: Die Geraden haben einen gemeinsamen Punkt, der durch Gleichsetzen der Geradengleichungen gefunden wird.
  3. Windschief: Die Geraden haben keinen gemeinsamen Punkt und liegen nicht in einer Ebene.

Beispiel: Zwei Geraden g₁ und g₂ sind parallel, wenn ihre Richtungsvektoren Vielfache voneinander sind.

Für die Lagebeziehung zwischen einer Geraden und einer Ebene gibt es ebenfalls drei Möglichkeiten:

  1. Die Gerade ist parallel zur Ebene: Kein Schnittpunkt.
  2. Die Gerade schneidet die Ebene in einem Punkt.
  3. Die Gerade liegt vollständig in der Ebene.

Highlight: Die Lagebeziehung zwischen Gerade und Ebene kann durch Einsetzen der Geradengleichung in die Ebenengleichung bestimmt werden.

Diese Lagebeziehungen sind fundamental für das Verständnis räumlicher Strukturen und finden Anwendung in vielen Bereichen der Mathematik und Physik. Sie bilden eine wichtige Grundlage für komplexere Probleme in der Vektorrechnung und analytischen Geometrie.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Line and Plane Relationships

The final section details the relationships between lines and planes, essential for Gerade liegt in Ebene Beispiel.

Definition: A line can be parallel to, intersect with, or lie within a plane.

Example: The relationship between a line and plane can be determined through parameter substitution.

Highlight: When a line lies within a plane, there are infinitely many common points.

Vocabulary: Parameter form - A representation of geometric objects using variable parameters.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Grundlagen der Vektorrechnung

Diese Seite bietet eine Einführung in die grundlegenden Operationen der Vektorrechnung. Sie behandelt die Addition, Subtraktion und Multiplikation von Vektoren sowie das wichtige Konzept des Skalarprodukts.

Definition: Vektoren sind mathematische Objekte, die sowohl eine Größe als auch eine Richtung haben.

Bei der Addition von Vektoren werden die entsprechenden Komponenten addiert. Die Subtraktion erfolgt durch Addition des Gegenvektors. Die Multiplikation eines Vektors mit einem Skalar skaliert alle Komponenten des Vektors.

Beispiel: Für die Addition gilt: a + b = a1+b1,a2+b2,a3+b3a₁ + b₁, a₂ + b₂, a₃ + b₃

Das Skalarprodukt zweier Vektoren a und b ist definiert als a · b = a₁b₁ + a₂b₂ + a₃b₃. Es spielt eine wichtige Rolle bei der Bestimmung der Orthogonalität von Vektoren.

Highlight: Zwei Vektoren sind orthogonal (senkrecht zueinander), wenn ihr Skalarprodukt gleich Null ist.

Diese Grundlagen sind essentiell für das Verständnis komplexerer Konzepte in der Vektorrechnung und bilden die Basis für viele Anwendungen in der analytischen Geometrie.



Wir dachten schon, du fragst nie...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist ein speziell für Schüler entwickeltes KI-Tool, das mehr als nur Antworten bietet. Basierend auf Millionen von Knowunity-Inhalten liefert er relevante Informationen, personalisierte Lernpläne, Quizze und Inhalte direkt im Chat und passt sich deinem individuellen Lernweg an.

Wo kann ich die Knowunity-App herunterladen?

Du kannst die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Genau! Genieße kostenlosen Zugang zu Lerninhalten, vernetze dich mit anderen Schülern und hol dir sofortige Hilfe – alles direkt auf deinem Handy.

Beliebtester Inhalt: Vektoraddition

Beliebtester Inhalt in Mathe

Beliebtester Inhalt

Findest du nicht, was du suchst? Entdecke andere Fächer.

Schüler lieben uns — und du auch.

4.6/5

App Store

4.7/5

Google Play

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer

 

Mathe

13.740

8. Feb. 2026

5 Seiten

Vektoren Zusammenfassung PDF Abitur - Grundlagen, Aufgaben und Lösungen

A

Angelina B.

@angelinab._b7a478

Vector Mathematics: A Comprehensive Guide - This detailed guide covers essential concepts in vector mathematics, from basic operations to spatial relationships. The material explores vector operations, geometric applications, and analytical methods crucial for understanding Vektorrechnung Grundlagenand spatial geometry. The... Mehr anzeigen

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Längenberechnung und Mittelpunktbestimmung

Diese Seite behandelt die Berechnung der Länge von Vektoren und die Bestimmung von Mittelpunkten, was grundlegende Operationen in der Vektorrechnung sind.

Die Länge eines Vektors a = (a₁, a₂, a₃) wird durch die Formel |a| = √a12+a22+a32a₁² + a₂² + a₃² berechnet. Diese Formel leitet sich aus dem Satz des Pythagoras ab und ist entscheidend für viele Berechnungen in der Vektorgeometrie.

Beispiel: Für einen Vektor a = (3, 4, 12.5) beträgt die Länge |a| = √(3² + 4² + 12.5²) ≈ 13.5

Zur Bestimmung des Mittelpunkts zwischen zwei Punkten A und B wird der Vektor AB berechnet und halbiert. Der Mittelpunkt M ergibt sich dann aus M = A + ½AB.

Highlight: Die Mittelpunktformel lautet: M = ½A+BA + B

Die Seite führt auch in die Geradengleichung ein, die in der Parameterform x = OP + t · AB dargestellt wird, wobei OP der Ortsvektor eines Punktes auf der Geraden und AB der Richtungsvektor ist.

Diese Konzepte sind fundamental für das Verständnis der Vektorrechnung und bilden die Grundlage für komplexere Anwendungen in der analytischen Geometrie.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Ebenengleichungen und Kollinearität

Diese Seite behandelt zwei wichtige Konzepte der Vektorrechnung: Ebenengleichungen und die Kollinearität von Vektoren.

Die Ebenengleichung in Parameterform wird als E = P + r · u + s · v dargestellt, wobei P der Stützvektor und u und v die Richtungs- oder Spannvektoren sind. Eine wichtige Bedingung ist, dass u und v nicht kollinear sein dürfen.

Definition: Eine Ebene ist eine zweidimensionale Fläche im dreidimensionalen Raum.

Kollinearität von Vektoren ist ein zentrales Konzept in der Vektorrechnung. Zwei Vektoren a und b sind kollinear, wenn sie Vielfache voneinander sind, also wenn a = r · b für einen Skalar r gilt.

Beispiel: Die Vektoren a = (3, 6, 9) und b = (1, 2, 3) sind kollinear, da a = 3b.

Highlight: Kollineare Vektoren liegen auf derselben Geraden oder ihrer Verlängerung.

Die Überprüfung der Kollinearität ist wichtig für viele Anwendungen in der analytischen Geometrie, insbesondere bei der Untersuchung von Lagebeziehungen zwischen Geraden und Ebenen.

Diese Konzepte bilden eine wichtige Grundlage für fortgeschrittene Themen in der Vektorrechnung und sind essentiell für das Verständnis räumlicher Beziehungen in der Mathematik.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Lagebeziehungen von Geraden und Ebenen

Diese Seite behandelt die verschiedenen Lagebeziehungen zwischen Geraden sowie zwischen Geraden und Ebenen, ein zentrales Thema in der Vektorrechnung und analytischen Geometrie.

Für Geraden gibt es drei mögliche Lagebeziehungen:

  1. Parallel oder identisch: Die Richtungsvektoren sind kollinear abhängig.
  2. Schneidend: Die Geraden haben einen gemeinsamen Punkt, der durch Gleichsetzen der Geradengleichungen gefunden wird.
  3. Windschief: Die Geraden haben keinen gemeinsamen Punkt und liegen nicht in einer Ebene.

Beispiel: Zwei Geraden g₁ und g₂ sind parallel, wenn ihre Richtungsvektoren Vielfache voneinander sind.

Für die Lagebeziehung zwischen einer Geraden und einer Ebene gibt es ebenfalls drei Möglichkeiten:

  1. Die Gerade ist parallel zur Ebene: Kein Schnittpunkt.
  2. Die Gerade schneidet die Ebene in einem Punkt.
  3. Die Gerade liegt vollständig in der Ebene.

Highlight: Die Lagebeziehung zwischen Gerade und Ebene kann durch Einsetzen der Geradengleichung in die Ebenengleichung bestimmt werden.

Diese Lagebeziehungen sind fundamental für das Verständnis räumlicher Strukturen und finden Anwendung in vielen Bereichen der Mathematik und Physik. Sie bilden eine wichtige Grundlage für komplexere Probleme in der Vektorrechnung und analytischen Geometrie.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Line and Plane Relationships

The final section details the relationships between lines and planes, essential for Gerade liegt in Ebene Beispiel.

Definition: A line can be parallel to, intersect with, or lie within a plane.

Example: The relationship between a line and plane can be determined through parameter substitution.

Highlight: When a line lies within a plane, there are infinitely many common points.

Vocabulary: Parameter form - A representation of geometric objects using variable parameters.

Vekloren

Addition, Subraktion u.

Addition

$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end

Melde dich an, um den Inhalt zu sehenKostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Schließ dich Millionen Schülern an

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und Datenschutzerklärung

Grundlagen der Vektorrechnung

Diese Seite bietet eine Einführung in die grundlegenden Operationen der Vektorrechnung. Sie behandelt die Addition, Subtraktion und Multiplikation von Vektoren sowie das wichtige Konzept des Skalarprodukts.

Definition: Vektoren sind mathematische Objekte, die sowohl eine Größe als auch eine Richtung haben.

Bei der Addition von Vektoren werden die entsprechenden Komponenten addiert. Die Subtraktion erfolgt durch Addition des Gegenvektors. Die Multiplikation eines Vektors mit einem Skalar skaliert alle Komponenten des Vektors.

Beispiel: Für die Addition gilt: a + b = a1+b1,a2+b2,a3+b3a₁ + b₁, a₂ + b₂, a₃ + b₃

Das Skalarprodukt zweier Vektoren a und b ist definiert als a · b = a₁b₁ + a₂b₂ + a₃b₃. Es spielt eine wichtige Rolle bei der Bestimmung der Orthogonalität von Vektoren.

Highlight: Zwei Vektoren sind orthogonal (senkrecht zueinander), wenn ihr Skalarprodukt gleich Null ist.

Diese Grundlagen sind essentiell für das Verständnis komplexerer Konzepte in der Vektorrechnung und bilden die Basis für viele Anwendungen in der analytischen Geometrie.

Wir dachten schon, du fragst nie...

Was ist der Knowunity KI-Begleiter?

Unser KI-Begleiter ist ein speziell für Schüler entwickeltes KI-Tool, das mehr als nur Antworten bietet. Basierend auf Millionen von Knowunity-Inhalten liefert er relevante Informationen, personalisierte Lernpläne, Quizze und Inhalte direkt im Chat und passt sich deinem individuellen Lernweg an.

Wo kann ich die Knowunity-App herunterladen?

Du kannst die App im Google Play Store und im Apple App Store herunterladen.

Ist Knowunity wirklich kostenlos?

Genau! Genieße kostenlosen Zugang zu Lerninhalten, vernetze dich mit anderen Schülern und hol dir sofortige Hilfe – alles direkt auf deinem Handy.

617

Smart Tools NEU

Verwandle diesen Lernzettel in: ✓ 50+ Übungsfragen ✓ Interaktive Karteikarten ✓ Komplette Probeklausur ✓ Aufsatzgliederungen

Probeklausur
Quiz
Karteikarten
Aufsatz

Ähnlicher Inhalt

Komplexe Zahlen: Grundlagen

Entdecken Sie die Grundlagen komplexer Zahlen, einschließlich Multiplikation, Addition, Subtraktion, und der Rolle des Imaginärteils. Diese Zusammenfassung behandelt auch konjugierte komplexe Zahlen und deren geometrische Interpretation in der Zahlenebene. Ideal für Studierende, die sich auf Prüfungen vorbereiten oder ihr Verständnis vertiefen möchten.

MatheMathe
11

Pythagorean Theorem & Vectors

Entdecken Sie die Anwendung des Satzes des Pythagoras und die Berechnung von Vektoren in einem 3D-Koordinatensystem. Diese Zusammenfassung behandelt die wichtigsten Konzepte wie den Kathetensatz, Vektoroperationen und Distanzberechnungen. Ideal für Schüler der Qualifikationsphase, die sich auf Prüfungen vorbereiten.

MatheMathe
11

Vektoren und Koordinatensysteme

Erforsche die Grundlagen der Vektoren im dreidimensionalen Koordinatensystem. Dieser Inhalt behandelt die Skalarmultiplikation, Addition und Subtraktion von Vektoren sowie deren Beträge. Ideal für das Verständnis von Vektoroperationen und deren Anwendungen in der Geometrie. (Lambacher Schweizer 11, Kapitel 4.1-4.5)

MatheMathe
11

Vektoren Addition & Eigenschaften

Entdecken Sie die Grundlagen der Vektoraddition und die Eigenschaften von Vektoren im 3D-Koordinatensystem. Diese Zusammenfassung bietet eine klare Erklärung der Rechenregeln, einschließlich Gegenvektor und Nullvektor, sowie praktische Aufgaben zur Vertiefung des Verständnisses. Ideal für Schüler, die sich auf Prüfungen vorbereiten oder ihre Kenntnisse in der Vektorrechnung verbessern möchten.

MatheMathe
10

Vektorrechnung Grundlagen

Entdecken Sie die Grundlagen der Vektorrechnung mit diesem Lernzettel. Erfahren Sie alles über das Rechnen mit Vektoren, das Berechnen von Winkeln, Abständen zwischen Punkten, das Skalarprodukt und die Orthogonalität von Vektoren. Ideal für Schüler und Studierende, die sich auf Prüfungen vorbereiten.

MatheMathe
11

Vektoroperationen verstehen

Diese Zusammenfassung behandelt die grundlegenden Vektoroperationen: Addition, Subtraktion und Skalarmultiplikation. Erfahren Sie, wie man Vektoren koordinatenweise rechnet, und entdecken Sie wichtige Merksätze sowie geometrische Veranschaulichungen. Ideal für Studierende, die sich auf Prüfungen vorbereiten oder ihr Wissen über Vektoren vertiefen möchten.

MatheMathe
11

Beliebtester Inhalt: Vektoraddition

Beliebtester Inhalt in Mathe

Beliebtester Inhalt

Findest du nicht, was du suchst? Entdecke andere Fächer.

Schüler lieben uns — und du auch.

4.6/5

App Store

4.7/5

Google Play

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer

Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.

Stefan S

iOS-Nutzer

Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.

Samantha Klich

Android-Nutzerin

Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.

Anna

iOS-Nutzerin

Beste App der Welt! Keine Worte, weil sie einfach zu gut ist

Thomas R

iOS-Nutzer

Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.

Basil

Android-Nutzer

Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.

David K

iOS-Nutzer

Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!

Sudenaz Ocak

Android-Nutzerin

In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android-Nutzerin

sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.

Rohan U

Android-Nutzer

Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.

Xander S

iOS-Nutzer

DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮

Elisha

iOS-Nutzer

Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt

Paul T

iOS-Nutzer