App öffnen

Fächer

Lineare Algebra einfach erklärt: Vektoren, Matrizen und Geraden

Öffnen

366

3

user profile picture

Amelie

13.4.2021

Mathe

Lineare Algebra

Lineare Algebra einfach erklärt: Vektoren, Matrizen und Geraden

Lineare Algebra einfach erklärt: Grundlegende Konzepte der Vektorrechnung und analytischen Geometrie. Der Leitfaden behandelt Vektoren, Geraden und Ebenen im dreidimensionalen Raum, einschließlich ihrer Darstellungsformen, Umwandlungen und Lagebeziehungen.

• Vektoren werden durch Länge und Richtung definiert und spielen eine zentrale Rolle in der Linearen Algebra.
• Geraden und Ebenen können in verschiedenen Formen dargestellt werden, wie Parameterform, Koordinatenform und Normalenform.
• Wichtige Operationen umfassen Skalarprodukt, Vektorprodukt und die Berechnung von Längen und Winkeln.
• Lagebeziehungen zwischen Geraden, Ebenen und dem Koordinatensystem werden ausführlich behandelt.

...

13.4.2021

7960

Vectoren
Velctor ist durch Länge und Richtung festgelegt -> Pfeil
Verbindungsvektor AB Pfell der von A nach B venauff
Ortsveldtor OA: verbin

Öffnen

Umwandlung von Ebenengleichungen und Vektorprodukt

Dieser Abschnitt behandelt die verschiedenen Darstellungsformen von Ebenen und die Umwandlung zwischen diesen Formen. Zudem wird das Vektorprodukt eingeführt, ein wichtiges Konzept in der Linearen Algebra.

Die Umwandlung von der Parameterform in die Koordinatenform einer Ebene wird detailliert erklärt:

  1. Möglichkeit 1: Verwendung des Skalarprodukts
  2. Möglichkeit 2: Verwendung des Vektorprodukts

Example: Um eine Ebene von der Parameterform E: x = a + r · u + s · v in die Koordinatenform umzuwandeln, kann man das Vektorprodukt u × v berechnen, um den Normalenvektor zu erhalten.

Die Normalenform und Koordinatenform einer Ebene werden vorgestellt:

E: xax - a · n = 0 PunktNormalenformPunkt-Normalenform E: n · x - d = 0 allgemeineNormalenformallgemeine Normalenform E: ax₁ + bx₂ + cx₃ = d KoordinatenformKoordinatenform

Highlight: Die Hesse'sche Normalenform verwendet einen Normaleneinheitsvektor und ist besonders nützlich für die Berechnung von Abständen.

Das Vektorprodukt wird eingeführt und seine Anwendungen werden erläutert:

  • Ermittlung eines zu zwei Vektoren senkrecht stehenden Vektors
  • Berechnung des Flächeninhalts eines Parallelogramms oder Dreiecks
  • Berechnung des Volumens eines Spats oder einer Pyramide

Vocabulary: Das Vektorprodukt zweier Vektoren a und b ist definiert als a × b und ergibt einen Vektor, der senkrecht auf beiden Eingangsvektoren steht.

Die Lage von Geraden und Ebenen im Koordinatensystem wird diskutiert, einschließlich Spezialfälle wie parallele Lagen zu Achsen oder Ebenen.

Dieser Abschnitt bietet eine umfassende Übersicht über die verschiedenen Darstellungsformen von Ebenen und ihre Umwandlungen, was für das Verständnis der Linearen Algebra von großer Bedeutung ist.

Vectoren
Velctor ist durch Länge und Richtung festgelegt -> Pfeil
Verbindungsvektor AB Pfell der von A nach B venauff
Ortsveldtor OA: verbin

Öffnen

Lagebeziehungen und Winkelberechnungen in der Linearen Algebra

Dieser Abschnitt befasst sich mit den Lagebeziehungen zwischen Geraden und Ebenen sowie der Berechnung von Winkeln zwischen verschiedenen geometrischen Objekten. Diese Konzepte sind fundamental für das Verständnis der räumlichen Geometrie in der Linearen Algebra.

Die möglichen Lagebeziehungen zwischen zwei Geraden werden ausführlich behandelt:

  1. Schneiden in einem Punkt
  2. Echt parallel verlaufend
  3. Identisch
  4. Windschief zueinander

Example: Um zu überprüfen, ob zwei Geraden g und h sich schneiden, muss man prüfen, ob ihre Richtungsvektoren u und v linear unabhängig sind und ob ein gemeinsamer Punkt existiert.

Die Berechnung des Schnittwinkels zwischen zwei Vektoren a und b wird vorgestellt:

cosαα = aba · b / ab|a| · |b|

Highlight: Zwei Vektoren stehen senkrecht zueinander, wenn ihr Skalarprodukt gleich Null ist: a · b = 0

Für Geraden und Ebenen werden ähnliche Winkelberechnungen eingeführt:

  • Zwischen zwei Geraden: cosαα = |u · v| / uv|u| · |v|
  • Zwischen einer Geraden und einer Ebene: sinαα = |u · n| / un|u| · |n|
  • Zwischen zwei Ebenen: cosαα = |n₁ · n₂| / n1n2|n₁| · |n₂|

Vocabulary: Der Normalenvektor einer Ebene steht senkrecht auf allen Vektoren, die in der Ebene liegen.

Diese Berechnungen sind essentiell für die Analyse von räumlichen Beziehungen in der Linearen Algebra und finden Anwendung in verschiedenen Bereichen der Mathematik und Physik.

Der Abschnitt schließt mit einer Erwähnung von Abstandsberechnungen, die auf den vorgestellten Konzepten aufbauen und in der analytischen Geometrie von großer Bedeutung sind.

Diese detaillierte Behandlung von Lagebeziehungen und Winkelberechnungen bietet Studierenden ein solides Fundament für weiterführende Themen in der Linearen Algebra und der analytischen Geometrie.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

21 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 17 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

 

Mathe

7.960

13. Apr. 2021

3 Seiten

Lineare Algebra einfach erklärt: Vektoren, Matrizen und Geraden

user profile picture

Amelie

@am.btnr

Lineare Algebra einfach erklärt: Grundlegende Konzepte der Vektorrechnung und analytischen Geometrie. Der Leitfaden behandelt Vektoren, Geraden und Ebenen im dreidimensionalen Raum, einschließlich ihrer Darstellungsformen, Umwandlungen und Lagebeziehungen.

• Vektoren werden durch Länge und Richtung definiert und spielen eine zentrale... Mehr anzeigen

Vectoren
Velctor ist durch Länge und Richtung festgelegt -> Pfeil
Verbindungsvektor AB Pfell der von A nach B venauff
Ortsveldtor OA: verbin

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Umwandlung von Ebenengleichungen und Vektorprodukt

Dieser Abschnitt behandelt die verschiedenen Darstellungsformen von Ebenen und die Umwandlung zwischen diesen Formen. Zudem wird das Vektorprodukt eingeführt, ein wichtiges Konzept in der Linearen Algebra.

Die Umwandlung von der Parameterform in die Koordinatenform einer Ebene wird detailliert erklärt:

  1. Möglichkeit 1: Verwendung des Skalarprodukts
  2. Möglichkeit 2: Verwendung des Vektorprodukts

Example: Um eine Ebene von der Parameterform E: x = a + r · u + s · v in die Koordinatenform umzuwandeln, kann man das Vektorprodukt u × v berechnen, um den Normalenvektor zu erhalten.

Die Normalenform und Koordinatenform einer Ebene werden vorgestellt:

E: xax - a · n = 0 PunktNormalenformPunkt-Normalenform E: n · x - d = 0 allgemeineNormalenformallgemeine Normalenform E: ax₁ + bx₂ + cx₃ = d KoordinatenformKoordinatenform

Highlight: Die Hesse'sche Normalenform verwendet einen Normaleneinheitsvektor und ist besonders nützlich für die Berechnung von Abständen.

Das Vektorprodukt wird eingeführt und seine Anwendungen werden erläutert:

  • Ermittlung eines zu zwei Vektoren senkrecht stehenden Vektors
  • Berechnung des Flächeninhalts eines Parallelogramms oder Dreiecks
  • Berechnung des Volumens eines Spats oder einer Pyramide

Vocabulary: Das Vektorprodukt zweier Vektoren a und b ist definiert als a × b und ergibt einen Vektor, der senkrecht auf beiden Eingangsvektoren steht.

Die Lage von Geraden und Ebenen im Koordinatensystem wird diskutiert, einschließlich Spezialfälle wie parallele Lagen zu Achsen oder Ebenen.

Dieser Abschnitt bietet eine umfassende Übersicht über die verschiedenen Darstellungsformen von Ebenen und ihre Umwandlungen, was für das Verständnis der Linearen Algebra von großer Bedeutung ist.

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Lagebeziehungen und Winkelberechnungen in der Linearen Algebra

Dieser Abschnitt befasst sich mit den Lagebeziehungen zwischen Geraden und Ebenen sowie der Berechnung von Winkeln zwischen verschiedenen geometrischen Objekten. Diese Konzepte sind fundamental für das Verständnis der räumlichen Geometrie in der Linearen Algebra.

Die möglichen Lagebeziehungen zwischen zwei Geraden werden ausführlich behandelt:

  1. Schneiden in einem Punkt
  2. Echt parallel verlaufend
  3. Identisch
  4. Windschief zueinander

Example: Um zu überprüfen, ob zwei Geraden g und h sich schneiden, muss man prüfen, ob ihre Richtungsvektoren u und v linear unabhängig sind und ob ein gemeinsamer Punkt existiert.

Die Berechnung des Schnittwinkels zwischen zwei Vektoren a und b wird vorgestellt:

cosαα = aba · b / ab|a| · |b|

Highlight: Zwei Vektoren stehen senkrecht zueinander, wenn ihr Skalarprodukt gleich Null ist: a · b = 0

Für Geraden und Ebenen werden ähnliche Winkelberechnungen eingeführt:

  • Zwischen zwei Geraden: cosαα = |u · v| / uv|u| · |v|
  • Zwischen einer Geraden und einer Ebene: sinαα = |u · n| / un|u| · |n|
  • Zwischen zwei Ebenen: cosαα = |n₁ · n₂| / n1n2|n₁| · |n₂|

Vocabulary: Der Normalenvektor einer Ebene steht senkrecht auf allen Vektoren, die in der Ebene liegen.

Diese Berechnungen sind essentiell für die Analyse von räumlichen Beziehungen in der Linearen Algebra und finden Anwendung in verschiedenen Bereichen der Mathematik und Physik.

Der Abschnitt schließt mit einer Erwähnung von Abstandsberechnungen, die auf den vorgestellten Konzepten aufbauen und in der analytischen Geometrie von großer Bedeutung sind.

Diese detaillierte Behandlung von Lagebeziehungen und Winkelberechnungen bietet Studierenden ein solides Fundament für weiterführende Themen in der Linearen Algebra und der analytischen Geometrie.

Melde dich an, um den Inhalt freizuschaltenEs ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Vektoren und Grundlagen der Linearen Algebra

In diesem Abschnitt werden die fundamentalen Konzepte der Linearen Algebra vorgestellt, mit besonderem Fokus auf Vektoren und ihre Eigenschaften. Vektoren sind die Grundbausteine der Linearen Algebra und werden durch ihre Länge und Richtung charakterisiert.

Definition: Ein Vektor ist ein mathematisches Objekt, das durch Länge und Richtung festgelegt ist und oft als Pfeil dargestellt wird.

Es werden verschiedene Arten von Vektoren eingeführt, darunter:

  • Verbindungsvektor AB: Ein Pfeil, der von Punkt A nach Punkt B verläuft.
  • Ortsvektor OA: Verbindet den Ursprung mit einem Punkt A.
  • Einheitsvektoren: Standardbasis des dreidimensionalen Raums.
  • Nullvektor: Ein Vektor der Länge 0.

Highlight: Das Skalarprodukt ist eine grundlegende Operation in der Linearen Algebra, die zur Berechnung von Winkeln und Längen verwendet wird.

Die Geradengleichung wird in ihrer Parameterform vorgestellt:

g: x = a + r · u rRr ∈ R

Dabei ist a der Stützvektor, u der Richtungsvektor und r der Parameter.

Example: Eine Geradengleichung aus zwei Punkten aufzustellen, verwendet man die Formel: g: x = a + r · AB rRr ∈ R

Ebenen werden in ihrer Parameterform eingeführt:

E: x = a + r · u + s · v r,sRr, s ∈ R

Hier sind u und v die Spannvektoren, die nicht parallel zueinander sein dürfen.

Vocabulary: Spannvektoren sind Vektoren, die eine Ebene aufspannen und nicht parallel zueinander sind.

Wichtige Anwendungen der Vektorrechnung werden vorgestellt, wie:

  • Berechnung der Länge eines Vektors
  • Überprüfung der Orthogonalität zweier Vektoren
  • Berechnung des Winkels zwischen zwei Vektoren

Diese Grundlagen bilden das Fundament für weiterführende Konzepte in der Linearen Algebra.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Schüler:innen lieben uns — und du wirst es auch.

4.9/5

App Store

4.8/5

Google Play

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user

Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.

Stefan S

iOS user

Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.

Samantha Klich

Android user

Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.

Anna

iOS user

Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!

Jana V

iOS user

Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!

Lena M

Android user

Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️

Timo S

iOS user

Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!

Sudenaz Ocak

Android user

Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.

Greenlight Bonnie

Android user

Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼

Julia S

Android user

Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!

Marcus B

iOS user

Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben

Sarah L

Android user

Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.

Hans T

iOS user