Fächer

Fächer

Mehr

Wie du den Sinussatz und Kosinussatz für Winkel und Seiten im Dreieck benutzt

Öffnen

Wie du den Sinussatz und Kosinussatz für Winkel und Seiten im Dreieck benutzt
user profile picture

Maria

@mariamagdalena

·

377 Follower

Follow

Der Sinussatz und Kosinussatz im Überblick: Anwendung und Beispiele in der Trigonometrie

Sinussatz und Kosinussatz sind grundlegende trigonometrische Formeln zur Berechnung von Winkeln und Seiten in allgemeinen Dreiecken. Diese Methoden sind besonders nützlich, wenn kein rechter Winkel vorliegt.

  • Der Sinussatz wird verwendet, um Winkel oder Seiten zu berechnen, wenn zwei Seiten und ein gegenüberliegender Winkel bekannt sind.
  • Der Kosinussatz kommt zum Einsatz, wenn entweder drei Seiten gegeben sind und ein Winkel gesucht wird, oder wenn zwei Seiten und der eingeschlossene Winkel bekannt sind und die dritte Seite gesucht wird.
  • Für andere Fälle können der Sinussatz oder die Winkelsumme im Dreieck verwendet werden.

10.8.2021

8938

a
sin (a)
Beispiel:
d
b
Sin (B)
с
-> Dreieck muss nicht rechtwinklig sein
=
=
-> c=
Sinussatz
b
b
Sin (B)
C = ???
с
sin (7)
B
|.sin(x)
sin (

Öffnen

Sinussatz und Kosinussatz im allgemeinen Dreieck

Der Sinussatz und der Kosinussatz sind unverzichtbare Werkzeuge für die Trigonometrie im allgemeinen Dreieck. Diese Seite erklärt die Anwendung beider Sätze anhand von Beispielen und gibt praktische Tipps zur Lösung von Aufgaben.

Sinussatz

Der Sinussatz wird verwendet, um Winkel oder Seiten in einem beliebigen Dreieck zu berechnen, wenn zwei Seiten und ein gegenüberliegender Winkel bekannt sind. Die Formel lautet:

Definition: a / sin(A) = b / sin(B) = c / sin(C)

Dabei stehen a, b und c für die Seitenlängen und A, B und C für die gegenüberliegenden Winkel.

Beispiel: In einem Dreieck mit b = 5cm, B = 56° und y = 94° soll die Seite c berechnet werden.

Die Lösung erfolgt in vier Schritten:

  1. Überflüssigen Teil weglassen
  2. Nach gesuchter Größe umstellen
  3. Werte einsetzen
  4. Fertig!

In diesem Fall ergibt sich: c = (5cm * sin(94°)) / sin(56°) ≈ 6,02 cm

Kosinussatz

Der Kosinussatz kommt zum Einsatz, wenn entweder drei Seiten gegeben sind und ein Winkel gesucht wird, oder wenn zwei Seiten und der eingeschlossene Winkel bekannt sind und die dritte Seite gesucht wird.

Definition: c² = a² + b² - 2ab * cos(C)

Beispiel: In einem Dreieck mit a = 3cm, b = 5cm und y = 94° soll die Seite c berechnet werden.

Die Lösung erfolgt wieder in vier Schritten:

  1. Überflüssigen Teil weglassen
  2. Nach gesuchter Größe umstellen
  3. Werte einsetzen
  4. Fertig!

Das Ergebnis lautet: c ≈ 6,00772 cm

Highlight: Es ist wichtig zu wissen, wann welcher Satz anzuwenden ist. Der Kosinussatz wird verwendet, wenn drei Seiten gegeben sind und ein Winkel gesucht wird. Für alle anderen Fälle kommt der Sinussatz oder die Winkelsumme zum Einsatz.

Diese Formeln und Beispiele zeigen, wie vielseitig und nützlich der Sinussatz und der Kosinussatz in der Trigonometrie im allgemeinen Dreieck sind. Mit etwas Übung können Sinussatz Aufgaben und Kosinussatz Aufgaben effizient gelöst werden.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Wie du den Sinussatz und Kosinussatz für Winkel und Seiten im Dreieck benutzt

user profile picture

Maria

@mariamagdalena

·

377 Follower

Follow

Der Sinussatz und Kosinussatz im Überblick: Anwendung und Beispiele in der Trigonometrie

Sinussatz und Kosinussatz sind grundlegende trigonometrische Formeln zur Berechnung von Winkeln und Seiten in allgemeinen Dreiecken. Diese Methoden sind besonders nützlich, wenn kein rechter Winkel vorliegt.

  • Der Sinussatz wird verwendet, um Winkel oder Seiten zu berechnen, wenn zwei Seiten und ein gegenüberliegender Winkel bekannt sind.
  • Der Kosinussatz kommt zum Einsatz, wenn entweder drei Seiten gegeben sind und ein Winkel gesucht wird, oder wenn zwei Seiten und der eingeschlossene Winkel bekannt sind und die dritte Seite gesucht wird.
  • Für andere Fälle können der Sinussatz oder die Winkelsumme im Dreieck verwendet werden.

10.8.2021

8938

 

11/12

 

Mathe

281

a
sin (a)
Beispiel:
d
b
Sin (B)
с
-> Dreieck muss nicht rechtwinklig sein
=
=
-> c=
Sinussatz
b
b
Sin (B)
C = ???
с
sin (7)
B
|.sin(x)
sin (

Sinussatz und Kosinussatz im allgemeinen Dreieck

Der Sinussatz und der Kosinussatz sind unverzichtbare Werkzeuge für die Trigonometrie im allgemeinen Dreieck. Diese Seite erklärt die Anwendung beider Sätze anhand von Beispielen und gibt praktische Tipps zur Lösung von Aufgaben.

Sinussatz

Der Sinussatz wird verwendet, um Winkel oder Seiten in einem beliebigen Dreieck zu berechnen, wenn zwei Seiten und ein gegenüberliegender Winkel bekannt sind. Die Formel lautet:

Definition: a / sin(A) = b / sin(B) = c / sin(C)

Dabei stehen a, b und c für die Seitenlängen und A, B und C für die gegenüberliegenden Winkel.

Beispiel: In einem Dreieck mit b = 5cm, B = 56° und y = 94° soll die Seite c berechnet werden.

Die Lösung erfolgt in vier Schritten:

  1. Überflüssigen Teil weglassen
  2. Nach gesuchter Größe umstellen
  3. Werte einsetzen
  4. Fertig!

In diesem Fall ergibt sich: c = (5cm * sin(94°)) / sin(56°) ≈ 6,02 cm

Kosinussatz

Der Kosinussatz kommt zum Einsatz, wenn entweder drei Seiten gegeben sind und ein Winkel gesucht wird, oder wenn zwei Seiten und der eingeschlossene Winkel bekannt sind und die dritte Seite gesucht wird.

Definition: c² = a² + b² - 2ab * cos(C)

Beispiel: In einem Dreieck mit a = 3cm, b = 5cm und y = 94° soll die Seite c berechnet werden.

Die Lösung erfolgt wieder in vier Schritten:

  1. Überflüssigen Teil weglassen
  2. Nach gesuchter Größe umstellen
  3. Werte einsetzen
  4. Fertig!

Das Ergebnis lautet: c ≈ 6,00772 cm

Highlight: Es ist wichtig zu wissen, wann welcher Satz anzuwenden ist. Der Kosinussatz wird verwendet, wenn drei Seiten gegeben sind und ein Winkel gesucht wird. Für alle anderen Fälle kommt der Sinussatz oder die Winkelsumme zum Einsatz.

Diese Formeln und Beispiele zeigen, wie vielseitig und nützlich der Sinussatz und der Kosinussatz in der Trigonometrie im allgemeinen Dreieck sind. Mit etwas Übung können Sinussatz Aufgaben und Kosinussatz Aufgaben effizient gelöst werden.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

15 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.