Hier ist die optimierte Zusammenfassung in Deutsch:
Eine umfassende Übersicht... Mehr anzeigen
Europa und globalisierung
Deutschland zwischen demokratie und diktatur
Demokratie und freiheit
Bipolare welt und deutschland nach 1953
Imperialismus und erster weltkrieg
Das 20. jahrhundert
Frühe neuzeit
Herausbildung moderner strukturen in gesellschaft und staat
Das geteilte deutschland und die wiedervereinigung
Europa und die welt
Friedensschlüsse und ordnungen des friedens in der moderne
Der mensch und seine geschichte
Die moderne industriegesellschaft zwischen fortschritt und krise
Akteure internationaler politik in politischer perspektive
Großreiche
Alle Themen
5.332
•
27. Mai 2021
•
Ben
@hartxl
Hier ist die optimierte Zusammenfassung in Deutsch:
Eine umfassende Übersicht... Mehr anzeigen
Diese Seite behandelt Potenzfunktionen mit natürlichem ganzzahligen Exponent und unterscheidet zwischen geraden und ungeraden Exponenten. Die Eigenschaften werden detailliert für beide Fälle aufgelistet.
Für Potenzfunktionen mit geradem Exponent gelten folgende Eigenschaften:
Für Potenzfunktionen mit ungeradem Exponent gelten diese Eigenschaften:
Definition: Eine Potenzfunktion mit natürlichem ganzzahligen Exponent hat die allgemeine Form f = x^n, wobei n eine natürliche Zahl ist.
Example: f = x² ist ein Beispiel für eine Potenzfunktion mit geradem Exponent, während f = x³ ein Beispiel für eine Potenzfunktion mit ungeradem Exponent ist.
Highlight: Der Unterschied in der Symmetrie zwischen geraden und ungeraden Exponenten ist ein wichtiges Merkmal zur Unterscheidung dieser Funktionen.
Diese Übersicht der Eigenschaften von Potenzfunktionen bietet eine wichtige Ergänzung zum Verständnis verschiedener Funktionstypen und ihrer graphischen Darstellungen.
Diese Seite erweitert die Übersicht der Funktionsarten um Potenzfunktionen mit negativen ganzzahligen Exponenten. Auch hier wird zwischen geraden und ungeraden Exponenten unterschieden, wobei die spezifischen Eigenschaften für beide Fälle detailliert aufgeführt werden.
Für Potenzfunktionen mit geradem negativen Exponent gelten folgende Eigenschaften:
Für Potenzfunktionen mit ungeradem negativen Exponent gelten diese Eigenschaften:
Definition: Eine Potenzfunktion mit negativem ganzzahligen Exponent hat die allgemeine Form f = x^, wobei n eine natürliche Zahl ist.
Example: f = x^ ist ein Beispiel für eine Potenzfunktion mit geradem negativen Exponent, während f = x^ ein Beispiel für eine Potenzfunktion mit ungeradem negativen Exponent ist.
Highlight: Ein wichtiges Merkmal dieser Funktionen ist das Auftreten von Polstellen bei x = 0, was zu charakteristischen Asymptoten führt.
Diese Zusammenfassung der Eigenschaften von Potenzfunktionen mit negativen Exponenten ergänzt das Verständnis komplexerer Funktionstypen und ihrer graphischen Darstellungen.
Diese Seite bietet eine Übersicht der Eigenschaften von Exponential- und Logarithmusfunktionen, die als inverse Operationen zueinander betrachtet werden können. Die charakteristischen Merkmale beider Funktionstypen werden detailliert aufgelistet.
Für Exponentialfunktionen gelten folgende Eigenschaften:
Für Logarithmusfunktionen gelten diese Eigenschaften:
Definition: Eine Exponentialfunktion hat die allgemeine Form f = b^x, wobei b die Basis ist und b > 0, b ≠ 1.
Definition: Eine Logarithmusfunktion hat die allgemeine Form f = log_b, wobei b die Basis ist und b > 0, b ≠ 1.
Highlight: Der Zusammenhang zwischen Exponential- und Logarithmusfunktion zeigt sich in ihrer inversen Beziehung: log_b = x und b^) = x.
Diese Zusammenfassung der Eigenschaften von Exponential- und Logarithmusfunktionen ist essenziell für das Verständnis dieser wichtigen Funktionsklassen und ihrer Anwendungen in der Mathematik und den Naturwissenschaften.
Diese Seite erweitert die Übersicht der Funktionsarten um Wurzelfunktionen und trigonometrische Funktionen, insbesondere die Sinusfunktion. Die charakteristischen Eigenschaften beider Funktionstypen werden detailliert aufgelistet.
Für Wurzelfunktionen gelten folgende Eigenschaften:
Für die Sinusfunktion gelten diese Eigenschaften:
Definition: Eine Wurzelfunktion hat die allgemeine Form f = √x.
Definition: Die Sinusfunktion hat die allgemeine Form f = sin.
Highlight: Die Sinusfunktion ist periodisch mit der Periode 2π, was bedeutet, dass sich ihr Verlauf alle 2π wiederholt.
Diese Zusammenfassung der Eigenschaften von Wurzel- und trigonometrischen Funktionen bietet eine wichtige Grundlage für das Verständnis dieser speziellen Funktionsklassen und ihrer Anwendungen in der Mathematik und Physik.
Diese Seite vervollständigt die Übersicht der trigonometrischen Funktionen mit detaillierten Informationen zu Kosinus- und Tangensfunktionen. Die charakteristischen Eigenschaften beider Funktionstypen werden ausführlich dargestellt.
Für die Kosinusfunktion gelten folgende Eigenschaften:
Für die Tangensfunktion gelten diese Eigenschaften:
Definition: Die Kosinusfunktion hat die allgemeine Form f = cos.
Definition: Die Tangensfunktion hat die allgemeine Form f = tan.
Highlight: Die Tangensfunktion weist Polstellen auf, was zu charakteristischen vertikalen Asymptoten im Graphen führt.
Diese Zusammenfassung der Eigenschaften von Kosinus- und Tangensfunktionen vervollständigt das Bild der trigonometrischen Funktionen und bietet eine solide Grundlage für weiterführende mathematische Konzepte und Anwendungen.
Diese Seite bietet eine grundlegende Übersicht der Funktionsarten mit Fokus auf lineare und quadratische Funktionen. Sie präsentiert die wesentlichen Eigenschaften beider Funktionstypen in einer übersichtlichen Tabellenform.
Für lineare Funktionen werden folgende Eigenschaften aufgeführt:
Für quadratische Funktionen werden diese Eigenschaften hervorgehoben:
Definition: Eine lineare Funktion hat die allgemeine Form f = mx + n, wobei m die Steigung und n der y-Achsenabschnitt ist.
Definition: Eine quadratische Funktion hat die allgemeine Form f = ax² + bx + c, wobei a, b und c reelle Zahlen sind und a ≠ 0.
Highlight: Die Parabel einer quadratischen Funktion öffnet sich nach oben, wenn a > 0, und nach unten, wenn a < 0.
Diese Zusammenfassung bietet eine solide Grundlage für das Verständnis von Funktionen und dient als Merkblatt für lineare und quadratische Funktionen.
App Store
Google Play
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user
Ben
@hartxl
Hier ist die optimierte Zusammenfassung in Deutsch:
Eine umfassende Übersicht der Grundlagen von Funktionenin der Mathematik, die lineare, quadratische, Potenz-, Exponential-, Logarithmus-, Wurzel- und trigonometrische Funktionen abdeckt. Jede Funktionsart wird detailliert mit ihren charakteristischen Eigenschaften, Definitionsbereichen, Wertebereichen und graphischen... Mehr anzeigen
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Diese Seite behandelt Potenzfunktionen mit natürlichem ganzzahligen Exponent und unterscheidet zwischen geraden und ungeraden Exponenten. Die Eigenschaften werden detailliert für beide Fälle aufgelistet.
Für Potenzfunktionen mit geradem Exponent gelten folgende Eigenschaften:
Für Potenzfunktionen mit ungeradem Exponent gelten diese Eigenschaften:
Definition: Eine Potenzfunktion mit natürlichem ganzzahligen Exponent hat die allgemeine Form f = x^n, wobei n eine natürliche Zahl ist.
Example: f = x² ist ein Beispiel für eine Potenzfunktion mit geradem Exponent, während f = x³ ein Beispiel für eine Potenzfunktion mit ungeradem Exponent ist.
Highlight: Der Unterschied in der Symmetrie zwischen geraden und ungeraden Exponenten ist ein wichtiges Merkmal zur Unterscheidung dieser Funktionen.
Diese Übersicht der Eigenschaften von Potenzfunktionen bietet eine wichtige Ergänzung zum Verständnis verschiedener Funktionstypen und ihrer graphischen Darstellungen.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Diese Seite erweitert die Übersicht der Funktionsarten um Potenzfunktionen mit negativen ganzzahligen Exponenten. Auch hier wird zwischen geraden und ungeraden Exponenten unterschieden, wobei die spezifischen Eigenschaften für beide Fälle detailliert aufgeführt werden.
Für Potenzfunktionen mit geradem negativen Exponent gelten folgende Eigenschaften:
Für Potenzfunktionen mit ungeradem negativen Exponent gelten diese Eigenschaften:
Definition: Eine Potenzfunktion mit negativem ganzzahligen Exponent hat die allgemeine Form f = x^, wobei n eine natürliche Zahl ist.
Example: f = x^ ist ein Beispiel für eine Potenzfunktion mit geradem negativen Exponent, während f = x^ ein Beispiel für eine Potenzfunktion mit ungeradem negativen Exponent ist.
Highlight: Ein wichtiges Merkmal dieser Funktionen ist das Auftreten von Polstellen bei x = 0, was zu charakteristischen Asymptoten führt.
Diese Zusammenfassung der Eigenschaften von Potenzfunktionen mit negativen Exponenten ergänzt das Verständnis komplexerer Funktionstypen und ihrer graphischen Darstellungen.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Diese Seite bietet eine Übersicht der Eigenschaften von Exponential- und Logarithmusfunktionen, die als inverse Operationen zueinander betrachtet werden können. Die charakteristischen Merkmale beider Funktionstypen werden detailliert aufgelistet.
Für Exponentialfunktionen gelten folgende Eigenschaften:
Für Logarithmusfunktionen gelten diese Eigenschaften:
Definition: Eine Exponentialfunktion hat die allgemeine Form f = b^x, wobei b die Basis ist und b > 0, b ≠ 1.
Definition: Eine Logarithmusfunktion hat die allgemeine Form f = log_b, wobei b die Basis ist und b > 0, b ≠ 1.
Highlight: Der Zusammenhang zwischen Exponential- und Logarithmusfunktion zeigt sich in ihrer inversen Beziehung: log_b = x und b^) = x.
Diese Zusammenfassung der Eigenschaften von Exponential- und Logarithmusfunktionen ist essenziell für das Verständnis dieser wichtigen Funktionsklassen und ihrer Anwendungen in der Mathematik und den Naturwissenschaften.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Diese Seite erweitert die Übersicht der Funktionsarten um Wurzelfunktionen und trigonometrische Funktionen, insbesondere die Sinusfunktion. Die charakteristischen Eigenschaften beider Funktionstypen werden detailliert aufgelistet.
Für Wurzelfunktionen gelten folgende Eigenschaften:
Für die Sinusfunktion gelten diese Eigenschaften:
Definition: Eine Wurzelfunktion hat die allgemeine Form f = √x.
Definition: Die Sinusfunktion hat die allgemeine Form f = sin.
Highlight: Die Sinusfunktion ist periodisch mit der Periode 2π, was bedeutet, dass sich ihr Verlauf alle 2π wiederholt.
Diese Zusammenfassung der Eigenschaften von Wurzel- und trigonometrischen Funktionen bietet eine wichtige Grundlage für das Verständnis dieser speziellen Funktionsklassen und ihrer Anwendungen in der Mathematik und Physik.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Diese Seite vervollständigt die Übersicht der trigonometrischen Funktionen mit detaillierten Informationen zu Kosinus- und Tangensfunktionen. Die charakteristischen Eigenschaften beider Funktionstypen werden ausführlich dargestellt.
Für die Kosinusfunktion gelten folgende Eigenschaften:
Für die Tangensfunktion gelten diese Eigenschaften:
Definition: Die Kosinusfunktion hat die allgemeine Form f = cos.
Definition: Die Tangensfunktion hat die allgemeine Form f = tan.
Highlight: Die Tangensfunktion weist Polstellen auf, was zu charakteristischen vertikalen Asymptoten im Graphen führt.
Diese Zusammenfassung der Eigenschaften von Kosinus- und Tangensfunktionen vervollständigt das Bild der trigonometrischen Funktionen und bietet eine solide Grundlage für weiterführende mathematische Konzepte und Anwendungen.
Zugriff auf alle Dokumente
Verbessere deine Noten
Werde Teil der Community
Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie
Diese Seite bietet eine grundlegende Übersicht der Funktionsarten mit Fokus auf lineare und quadratische Funktionen. Sie präsentiert die wesentlichen Eigenschaften beider Funktionstypen in einer übersichtlichen Tabellenform.
Für lineare Funktionen werden folgende Eigenschaften aufgeführt:
Für quadratische Funktionen werden diese Eigenschaften hervorgehoben:
Definition: Eine lineare Funktion hat die allgemeine Form f = mx + n, wobei m die Steigung und n der y-Achsenabschnitt ist.
Definition: Eine quadratische Funktion hat die allgemeine Form f = ax² + bx + c, wobei a, b und c reelle Zahlen sind und a ≠ 0.
Highlight: Die Parabel einer quadratischen Funktion öffnet sich nach oben, wenn a > 0, und nach unten, wenn a < 0.
Diese Zusammenfassung bietet eine solide Grundlage für das Verständnis von Funktionen und dient als Merkblatt für lineare und quadratische Funktionen.
App Store
Google Play
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user
Die App ist sehr leicht und gut gestaltet. Habe bis jetzt alles gefunden, nachdem ich gesucht habe und aus den Präsentationen echt viel lernen können! Die App werde ich auf jeden Fall für eine Klassenarbeit verwenden! Und als eigene Inspiration hilft sie natürlich auch sehr.
Stefan S
iOS user
Diese App ist wirklich echt super. Es gibt so viele Lernzettel und Hilfen, […]. Mein Problemfach ist zum Beispiel Französisch und die App hat mega viel Auswahl für Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde diese jedem weiterempfehlen.
Samantha Klich
Android user
Wow ich bin wirklich komplett baff. Habe die App nur mal so ausprobiert, weil ich es schon oft in der Werbung gesehen habe und war absolut geschockt. Diese App ist DIE HILFE, die man sich für die Schule wünscht und vor allem werden so viele Sachen angeboten, wie z.B. Ausarbeitungen und Merkblätter, welche mir persönlich SEHR weitergeholfen haben.
Anna
iOS user
Ich finde Knowunity so grandios. Ich lerne wirklich für alles damit. Es gibt so viele verschiedene Lernzettel, die sehr gut erklärt sind!
Jana V
iOS user
Ich liebe diese App sie hilft mir vor jeder Arbeit kann Aufgaben kontrollieren sowie lösen und ist wirklich vielfältig verwendbar. Man kann mit diesem Fuchs auch normal reden so wie Probleme im echten Leben besprechen und er hilft einem. Wirklich sehr gut diese App kann ich nur weiter empfehlen, gerade für Menschen die etwas länger brauchen etwas zu verstehen!
Lena M
Android user
Ich finde Knowunity ist eine super App. Für die Schule ist sie ideal , wegen den Lernzetteln, Quizen und dem AI. Das gute an AI ist , dass er nicht direkt nur die Lösung ausspuckt sondern einen Weg zeigt wie man darauf kommt. Manchmal gibt er einem auch nur einen Tipp damit man selbst darauf kommt . Mir hilft Knowunity persönlich sehr viel und ich kann sie nur weiterempfehlen ☺️
Timo S
iOS user
Die App ist einfach super! Ich muss nur in die Suchleiste mein Thema eintragen und ich checke es sehr schnell. Ich muss nicht mehr 10 YouTube Videos gucken, um etwas zu verstehen und somit spare ich mir meine Zeit. Einfach zu empfehlen!!
Sudenaz Ocak
Android user
Diese App hat mich echt verbessert! In der Schule war ich richtig schlecht in Mathe und dank der App kann ich besser Mathe! Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android user
Ich benutze Knowunity schon sehr lange und meine Noten haben sich verbessert die App hilft mir bei Mathe,Englisch u.s.w. Ich bekomme Hilfe wenn ich sie brauche und bekomme sogar Glückwünsche für meine Arbeit Deswegen von mir 5 Sterne🫶🏼
Julia S
Android user
Also die App hat mir echt in super vielen Fächern geholfen! Ich hatte in der Mathe Arbeit davor eine 3+ und habe nur durch den School GPT und die Lernzettek auf der App eine 1-3 in Mathe geschafft…Ich bin Mega glücklich darüber also ja wircklich eine super App zum lernen und es spart sehr viel Heit dass man mehr Freizeit hat!
Marcus B
iOS user
Mit dieser App hab ich bessere Noten bekommen. Bessere Lernzettel gekriegt. Ich habe die App benutzt, als ich die Fächer nicht ganz verstanden habe,diese App ist ein würcklich GameChanger für die Schule, Hausaufgaben
Sarah L
Android user
Hatte noch nie so viel Spaß beim Lernen und der School Bot macht super Aufschriebe die man Herunterladen kann total Übersichtlich und Lehreich. Bin begeistert.
Hans T
iOS user