Fächer

Fächer

Mehr

Vektoren Klausur für Mathe Klasse 11 und 12 mit Lösungen

Öffnen

Vektoren Klausur für Mathe Klasse 11 und 12 mit Lösungen
user profile picture

Jil

@jilstnm

·

23 Follower

Follow

This document covers key concepts in vector mathematics, including coordinate systems, parallelograms, reflections, parallel lines, and the centroid of a triangle. It provides detailed explanations and examples for solving vector problems in 3D space. The material is suitable for advanced high school or early university-level mathematics courses.

Key points:
• Plotting points and shapes in 3D coordinate systems
• Calculating parallel and perpendicular vectors
• Finding reflection points across planes
• Deriving parametric equations for lines
• Determining if points lie on given lines
• Proving when lines are parallel
• Calculating the centroid (center of mass) of a triangle

Highlight: The document emphasizes showing clear calculation steps and explaining reasoning, which is crucial for exam preparation.

Vocabulary: Important terms include parametric equations, direction vectors, position vectors, and centroid.

27.2.2021

17065

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 3: Parallel Lines and Linear Systems

This page delves into proving that lines are parallel and solving systems of linear equations.

Key concepts: • Criteria for parallel lines in vector form • Solving linear systems to find intersection points • Determining points on a line that lie in a specific plane

Definition: Two lines are parallel if their direction vectors are scalar multiples of each other.

Example: To prove lines a and b are parallel, their direction vectors (2, 1, -2) and (6, 3, -6) are compared, showing a scalar relationship of 3.

Highlight: The page demonstrates how to use substitution and elimination methods to solve systems of linear equations arising from vector problems.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 6: Triangle Geometry and Centroid Calculation

This page focuses on triangle geometry, particularly the calculation of the centroid.

Key topics: • Visualizing triangles in 3D space • Calculating midpoints of triangle sides • Finding the centroid using vector operations

Definition: The centroid of a triangle divides each median in a 2:1 ratio, with the longer segment closer to the vertex.

Example: For triangle ABC with vertices A(4|5|3), B(-1|3|-4), and C(3|-1|-2), the centroid S is calculated using vector operations.

Highlight: The page provides a step-by-step approach to finding the centroid, emphasizing the use of vector addition and scalar multiplication.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 1: Introduction and Problem Setup

This page introduces a set of vector geometry problems for a mathematics exam. The questions cover various aspects of 3D vector calculations and geometric concepts.

Key points: • A triangle ABC is given with vertices A(4|5|3), B(-1|3|-4), and C(3|-1|-2) • Students must plot the triangle, find a fourth point to form a parallelogram, and reflect point A • A parametric equation for a line parallel to the x₁-axis through point B is required • The concept of the centroid (Schwerpunkt) of a triangle is introduced

Definition: The centroid of a triangle is the intersection point of its medians, which connect each vertex to the midpoint of the opposite side.

Highlight: The centroid divides each median in a 2:1 ratio, with the longer segment closer to the vertex.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 5: Intersection of Lines and Planes

This page covers the intersection of lines with planes and verifying calculated results.

Key concepts: • Determining the intersection point of a line and a plane • Using parametric equations to solve for intersection points • Verifying results through substitution

Example: The intersection of a line a: x = (3, 1, 2) + t(3, 2, 1) with a plane is found by solving for the parameter t and then substituting back into the line equation.

Highlight: The page stresses the importance of checking solutions by substituting the calculated intersection point into both the line and plane equations.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 2: Vector Calculations and Line Equations

This page focuses on vector calculations and deriving equations for lines in 3D space.

Key topics covered: • Calculating direction vectors from two points • Formulating parametric equations for lines • Determining if a point lies on a given line

Example: For a line through points A(1|4|0) and B(0|1|2), the direction vector AB is calculated as (-1, -3, 2).

Vocabulary: The "Ortsvektor" (position vector) represents the coordinates of a point, while the "Richtungsvektor" (direction vector) indicates the direction of a line.

Highlight: The page emphasizes the importance of explaining the meaning of each component in a parametric equation.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 7: Advanced Vector Problems and Solution Strategies

This page covers more advanced vector problems and outlines strategies for solving complex geometric questions.

Key topics: • Reflection of points across planes • Parallel lines in specific planes • General approach to solving centroid problems

Example: To reflect point A(4|5|3) across the x₁x₃-plane, only the x₂-coordinate changes sign, resulting in A'(4|-5|3).

Highlight: The page provides a general strategy for finding the centroid of a triangle:

  1. Calculate the midpoints of all sides
  2. Form equations for the medians
  3. Set up a system of linear equations
  4. Solve the system to find the centroid coordinates

Vocabulary: A median of a triangle is a line segment that connects a vertex to the midpoint of the opposite side.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Öffnen

Page 4: Collinearity and Vector Operations

This page focuses on determining collinearity of points and performing various vector operations.

Key topics: • Testing for collinearity using vector equations • Solving parametric equations to find specific points • Vector addition and scalar multiplication

Vocabulary: Collinear points lie on the same straight line.

Example: To check if three points are collinear, their position vectors are used to form an equation: A + t(B-A) = C, where t is a scalar parameter.

Highlight: The page emphasizes the importance of verifying solutions by substituting results back into original equations.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Vektoren Klausur für Mathe Klasse 11 und 12 mit Lösungen

user profile picture

Jil

@jilstnm

·

23 Follower

Follow

This document covers key concepts in vector mathematics, including coordinate systems, parallelograms, reflections, parallel lines, and the centroid of a triangle. It provides detailed explanations and examples for solving vector problems in 3D space. The material is suitable for advanced high school or early university-level mathematics courses.

Key points:
• Plotting points and shapes in 3D coordinate systems
• Calculating parallel and perpendicular vectors
• Finding reflection points across planes
• Deriving parametric equations for lines
• Determining if points lie on given lines
• Proving when lines are parallel
• Calculating the centroid (center of mass) of a triangle

Highlight: The document emphasizes showing clear calculation steps and explaining reasoning, which is crucial for exam preparation.

Vocabulary: Important terms include parametric equations, direction vectors, position vectors, and centroid.

27.2.2021

17065

 

12

 

Mathe

690

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 3: Parallel Lines and Linear Systems

This page delves into proving that lines are parallel and solving systems of linear equations.

Key concepts: • Criteria for parallel lines in vector form • Solving linear systems to find intersection points • Determining points on a line that lie in a specific plane

Definition: Two lines are parallel if their direction vectors are scalar multiples of each other.

Example: To prove lines a and b are parallel, their direction vectors (2, 1, -2) and (6, 3, -6) are compared, showing a scalar relationship of 3.

Highlight: The page demonstrates how to use substitution and elimination methods to solve systems of linear equations arising from vector problems.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 6: Triangle Geometry and Centroid Calculation

This page focuses on triangle geometry, particularly the calculation of the centroid.

Key topics: • Visualizing triangles in 3D space • Calculating midpoints of triangle sides • Finding the centroid using vector operations

Definition: The centroid of a triangle divides each median in a 2:1 ratio, with the longer segment closer to the vertex.

Example: For triangle ABC with vertices A(4|5|3), B(-1|3|-4), and C(3|-1|-2), the centroid S is calculated using vector operations.

Highlight: The page provides a step-by-step approach to finding the centroid, emphasizing the use of vector addition and scalar multiplication.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 1: Introduction and Problem Setup

This page introduces a set of vector geometry problems for a mathematics exam. The questions cover various aspects of 3D vector calculations and geometric concepts.

Key points: • A triangle ABC is given with vertices A(4|5|3), B(-1|3|-4), and C(3|-1|-2) • Students must plot the triangle, find a fourth point to form a parallelogram, and reflect point A • A parametric equation for a line parallel to the x₁-axis through point B is required • The concept of the centroid (Schwerpunkt) of a triangle is introduced

Definition: The centroid of a triangle is the intersection point of its medians, which connect each vertex to the midpoint of the opposite side.

Highlight: The centroid divides each median in a 2:1 ratio, with the longer segment closer to the vertex.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 5: Intersection of Lines and Planes

This page covers the intersection of lines with planes and verifying calculated results.

Key concepts: • Determining the intersection point of a line and a plane • Using parametric equations to solve for intersection points • Verifying results through substitution

Example: The intersection of a line a: x = (3, 1, 2) + t(3, 2, 1) with a plane is found by solving for the parameter t and then substituting back into the line equation.

Highlight: The page stresses the importance of checking solutions by substituting the calculated intersection point into both the line and plane equations.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 2: Vector Calculations and Line Equations

This page focuses on vector calculations and deriving equations for lines in 3D space.

Key topics covered: • Calculating direction vectors from two points • Formulating parametric equations for lines • Determining if a point lies on a given line

Example: For a line through points A(1|4|0) and B(0|1|2), the direction vector AB is calculated as (-1, -3, 2).

Vocabulary: The "Ortsvektor" (position vector) represents the coordinates of a point, while the "Richtungsvektor" (direction vector) indicates the direction of a line.

Highlight: The page emphasizes the importance of explaining the meaning of each component in a parametric equation.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 7: Advanced Vector Problems and Solution Strategies

This page covers more advanced vector problems and outlines strategies for solving complex geometric questions.

Key topics: • Reflection of points across planes • Parallel lines in specific planes • General approach to solving centroid problems

Example: To reflect point A(4|5|3) across the x₁x₃-plane, only the x₂-coordinate changes sign, resulting in A'(4|-5|3).

Highlight: The page provides a general strategy for finding the centroid of a triangle:

  1. Calculate the midpoints of all sides
  2. Form equations for the medians
  3. Set up a system of linear equations
  4. Solve the system to find the centroid coordinates

Vocabulary: A median of a triangle is a line segment that connects a vertex to the midpoint of the opposite side.

GK Mathematik
Achten Sie auf nachvollziehbare Rechenwege!
1. Gegeben ist das Dreieck ABC mit den Eckpunkten A(4 | 5 | 3), B(-1|3|-4) und C(3

Page 4: Collinearity and Vector Operations

This page focuses on determining collinearity of points and performing various vector operations.

Key topics: • Testing for collinearity using vector equations • Solving parametric equations to find specific points • Vector addition and scalar multiplication

Vocabulary: Collinear points lie on the same straight line.

Example: To check if three points are collinear, their position vectors are used to form an equation: A + t(B-A) = C, where t is a scalar parameter.

Highlight: The page emphasizes the importance of verifying solutions by substituting results back into original equations.

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.