Fächer

Fächer

Mehr

Vergleich mechanische & elektromagnetische Schwingung: Formeln, Beispiele & mehr!

Öffnen

Vergleich mechanische & elektromagnetische Schwingung: Formeln, Beispiele & mehr!
user profile picture

Jule

@jule.03

·

287 Follower

Follow

Der Vergleich zwischen mechanischen und elektromagnetischen Schwingungen zeigt Parallelen in ihren grundlegenden Eigenschaften und mathematischen Beschreibungen. Die Formelsammlung deckt wichtige Konzepte wie das Hookesche Gesetz, Periodendauer, Energieerhaltung und Bewegungsgesetze für beide Schwingungsarten ab. Besonders hervorgehoben werden die Analogien zwischen den Komponenten mechanischer und elektromagnetischer Schwingkreise.

  • Das Dokument präsentiert Formeln für Periodendauer, Energie und Bewegungsgesetze bei mechanischen und elektrischen Schwingungen.
  • Es werden Parallelen zwischen mechanischen Elementen (Masse, Federkonstante) und elektrischen Komponenten (Induktivität, Kapazität) gezogen.
  • Die Kreisfrequenz wird als zentrales Konzept für harmonische Schwingungen eingeführt.
  • Gedämpfte Schwingungen werden durch Differentialgleichungen für beide Systeme beschrieben.

3.5.2021

1946

Formelsammlung
HOOKESCHE GESETZ
LINEARES KRAFTGESETZ
F=
PERIODENDAUER FEDERSCHWINGER
PERIODENDAUER FADENPENDEL
Elong
PERIODENDAUER SCHWINGKR

Öffnen

Gedämpfte Schwingungen und Systemvergleich

Die letzte Seite widmet sich den gedämpften Schwingungen und stellt einen direkten Vergleich zwischen mechanischen und elektromagnetischen Schwingungssystemen her. Die Differentialgleichungen für gedämpfte Schwingungen werden sowohl für mechanische als auch für elektromagnetische Systeme präsentiert.

Definition: Gedämpfte Schwingungen sind Schwingungen, bei denen die Amplitude aufgrund von Energieverlusten mit der Zeit abnimmt.

Ein tabellarischer Vergleich zeigt die Analogien zwischen den Komponenten mechanischer und elektromagnetischer Schwingungen auf:

  • Masse entspricht der Induktivität
  • Richtgröße entspricht dem Kehrwert der Kapazität
  • Elongation entspricht der elektrischen Ladung
  • Geschwindigkeit entspricht der Stromstärke
  • Reibungsfaktor entspricht dem elektrischen Widerstand

Highlight: Diese Analogien ermöglichen es, Erkenntnisse aus einem Bereich auf den anderen zu übertragen und komplexe Systeme besser zu verstehen.

Diese Gegenüberstellung verdeutlicht die tiefgreifenden Parallelen zwischen mechanischen und elektromagnetischen Schwingungen und unterstreicht die Universalität der zugrunde liegenden physikalischen Prinzipien.

Formelsammlung
HOOKESCHE GESETZ
LINEARES KRAFTGESETZ
F=
PERIODENDAUER FEDERSCHWINGER
PERIODENDAUER FADENPENDEL
Elong
PERIODENDAUER SCHWINGKR

Öffnen

Bewegungsgesetze und Kreisfrequenz

Diese Seite konzentriert sich auf die mathematische Beschreibung von harmonischen Schwingungen durch Bewegungsgesetze und die Einführung der Kreisfrequenz. Die Zeit-Elongations-, Zeit-Geschwindigkeits- und Zeit-Beschleunigungsgesetze werden für mechanische Schwingungen präsentiert.

Vocabulary: Die Kreisfrequenz ω (Omega) beschreibt die Winkelgeschwindigkeit einer Schwingung und ist mit der Periodendauer T durch die Beziehung ω = 2π/T verknüpft.

Für den elektromagnetischen Schwingkreis werden analoge Gleichungen für Spannung und Stromstärke angegeben, die die gleiche mathematische Struktur wie die mechanischen Schwingungsgleichungen aufweisen.

Example: Das Zeit-Elongations-Gesetz für eine harmonische Schwingung lautet: s(t) = ŝ · sin(ωt), wobei ŝ die Amplitude der Schwingung ist.

Die Kreisfrequenz wird sowohl für mechanische als auch für elektrische Schwingungen hergeleitet, was die enge Verwandtschaft beider Phänomene unterstreicht.

Formelsammlung
HOOKESCHE GESETZ
LINEARES KRAFTGESETZ
F=
PERIODENDAUER FEDERSCHWINGER
PERIODENDAUER FADENPENDEL
Elong
PERIODENDAUER SCHWINGKR

Öffnen

Formelsammlung für Schwingungen

Diese Seite bietet einen Überblick über grundlegende Formeln für mechanische und elektromagnetische Schwingungen. Das Hookesche Gesetz und das lineare Kraftgesetz bilden die Grundlage für die Beschreibung von Federschwingungen. Die Periodendauer wird für verschiedene Schwingungssysteme wie Federschwinger, Fadenpendel und elektromagnetischer Schwingkreis angegeben.

Definition: Die Periodendauer T ist die Zeit, die ein schwingender Körper für eine vollständige Schwingung benötigt.

Die Energieerhaltung wird sowohl für mechanische als auch für elektrische Schwingungen dargestellt, wobei die Gesamtenergie als Summe verschiedener Energieformen konstant bleibt.

Highlight: Bei mechanischen Schwingungen setzt sich die Gesamtenergie aus kinetischer und potentieller Energie zusammen, während beim Schwingkreis elektrische und magnetische Energie beteiligt sind.

Example: Für einen Federschwinger gilt: E = Ekin + Epot = 1/2 · m · v² + 1/2 · D · s² = konstant

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.

Vergleich mechanische & elektromagnetische Schwingung: Formeln, Beispiele & mehr!

user profile picture

Jule

@jule.03

·

287 Follower

Follow

Der Vergleich zwischen mechanischen und elektromagnetischen Schwingungen zeigt Parallelen in ihren grundlegenden Eigenschaften und mathematischen Beschreibungen. Die Formelsammlung deckt wichtige Konzepte wie das Hookesche Gesetz, Periodendauer, Energieerhaltung und Bewegungsgesetze für beide Schwingungsarten ab. Besonders hervorgehoben werden die Analogien zwischen den Komponenten mechanischer und elektromagnetischer Schwingkreise.

  • Das Dokument präsentiert Formeln für Periodendauer, Energie und Bewegungsgesetze bei mechanischen und elektrischen Schwingungen.
  • Es werden Parallelen zwischen mechanischen Elementen (Masse, Federkonstante) und elektrischen Komponenten (Induktivität, Kapazität) gezogen.
  • Die Kreisfrequenz wird als zentrales Konzept für harmonische Schwingungen eingeführt.
  • Gedämpfte Schwingungen werden durch Differentialgleichungen für beide Systeme beschrieben.

3.5.2021

1946

 

11/12

 

Physik

135

Formelsammlung
HOOKESCHE GESETZ
LINEARES KRAFTGESETZ
F=
PERIODENDAUER FEDERSCHWINGER
PERIODENDAUER FADENPENDEL
Elong
PERIODENDAUER SCHWINGKR

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Gedämpfte Schwingungen und Systemvergleich

Die letzte Seite widmet sich den gedämpften Schwingungen und stellt einen direkten Vergleich zwischen mechanischen und elektromagnetischen Schwingungssystemen her. Die Differentialgleichungen für gedämpfte Schwingungen werden sowohl für mechanische als auch für elektromagnetische Systeme präsentiert.

Definition: Gedämpfte Schwingungen sind Schwingungen, bei denen die Amplitude aufgrund von Energieverlusten mit der Zeit abnimmt.

Ein tabellarischer Vergleich zeigt die Analogien zwischen den Komponenten mechanischer und elektromagnetischer Schwingungen auf:

  • Masse entspricht der Induktivität
  • Richtgröße entspricht dem Kehrwert der Kapazität
  • Elongation entspricht der elektrischen Ladung
  • Geschwindigkeit entspricht der Stromstärke
  • Reibungsfaktor entspricht dem elektrischen Widerstand

Highlight: Diese Analogien ermöglichen es, Erkenntnisse aus einem Bereich auf den anderen zu übertragen und komplexe Systeme besser zu verstehen.

Diese Gegenüberstellung verdeutlicht die tiefgreifenden Parallelen zwischen mechanischen und elektromagnetischen Schwingungen und unterstreicht die Universalität der zugrunde liegenden physikalischen Prinzipien.

Formelsammlung
HOOKESCHE GESETZ
LINEARES KRAFTGESETZ
F=
PERIODENDAUER FEDERSCHWINGER
PERIODENDAUER FADENPENDEL
Elong
PERIODENDAUER SCHWINGKR

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Bewegungsgesetze und Kreisfrequenz

Diese Seite konzentriert sich auf die mathematische Beschreibung von harmonischen Schwingungen durch Bewegungsgesetze und die Einführung der Kreisfrequenz. Die Zeit-Elongations-, Zeit-Geschwindigkeits- und Zeit-Beschleunigungsgesetze werden für mechanische Schwingungen präsentiert.

Vocabulary: Die Kreisfrequenz ω (Omega) beschreibt die Winkelgeschwindigkeit einer Schwingung und ist mit der Periodendauer T durch die Beziehung ω = 2π/T verknüpft.

Für den elektromagnetischen Schwingkreis werden analoge Gleichungen für Spannung und Stromstärke angegeben, die die gleiche mathematische Struktur wie die mechanischen Schwingungsgleichungen aufweisen.

Example: Das Zeit-Elongations-Gesetz für eine harmonische Schwingung lautet: s(t) = ŝ · sin(ωt), wobei ŝ die Amplitude der Schwingung ist.

Die Kreisfrequenz wird sowohl für mechanische als auch für elektrische Schwingungen hergeleitet, was die enge Verwandtschaft beider Phänomene unterstreicht.

Formelsammlung
HOOKESCHE GESETZ
LINEARES KRAFTGESETZ
F=
PERIODENDAUER FEDERSCHWINGER
PERIODENDAUER FADENPENDEL
Elong
PERIODENDAUER SCHWINGKR

Melde dich an, um den Inhalt freizuschalten. Es ist kostenlos!

Zugriff auf alle Dokumente

Verbessere deine Noten

Werde Teil der Community

Mit der Anmeldung akzeptierst du die Nutzungsbedingungen und die Datenschutzrichtlinie

Formelsammlung für Schwingungen

Diese Seite bietet einen Überblick über grundlegende Formeln für mechanische und elektromagnetische Schwingungen. Das Hookesche Gesetz und das lineare Kraftgesetz bilden die Grundlage für die Beschreibung von Federschwingungen. Die Periodendauer wird für verschiedene Schwingungssysteme wie Federschwinger, Fadenpendel und elektromagnetischer Schwingkreis angegeben.

Definition: Die Periodendauer T ist die Zeit, die ein schwingender Körper für eine vollständige Schwingung benötigt.

Die Energieerhaltung wird sowohl für mechanische als auch für elektrische Schwingungen dargestellt, wobei die Gesamtenergie als Summe verschiedener Energieformen konstant bleibt.

Highlight: Bei mechanischen Schwingungen setzt sich die Gesamtenergie aus kinetischer und potentieller Energie zusammen, während beim Schwingkreis elektrische und magnetische Energie beteiligt sind.

Example: Für einen Federschwinger gilt: E = Ekin + Epot = 1/2 · m · v² + 1/2 · D · s² = konstant

Nichts passendes dabei? Erkunde andere Fachbereiche.

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

Knowunity wurde bei Apple als "Featured Story" ausgezeichnet und hat die App-Store-Charts in der Kategorie Bildung in Deutschland, Italien, Polen, der Schweiz und dem Vereinigten Königreich regelmäßig angeführt. Werde noch heute Mitglied bei Knowunity und hilf Millionen von Schüler:innen auf der ganzen Welt.

Ranked #1 Education App

Laden im

Google Play

Laden im

App Store

Knowunity ist die #1 unter den Bildungs-Apps in fünf europäischen Ländern

4.9+

Durchschnittliche App-Bewertung

13 M

Schüler:innen lieben Knowunity

#1

In Bildungs-App-Charts in 12 Ländern

950 K+

Schüler:innen haben Lernzettel hochgeladen

Immer noch nicht überzeugt? Schau dir an, was andere Schüler:innen sagen...

iOS User

Ich liebe diese App so sehr, ich benutze sie auch täglich. Ich empfehle Knowunity jedem!! Ich bin damit von einer 4 auf eine 1 gekommen :D

Philipp, iOS User

Die App ist sehr einfach und gut gestaltet. Bis jetzt habe ich immer alles gefunden, was ich gesucht habe :D

Lena, iOS Userin

Ich liebe diese App ❤️, ich benutze sie eigentlich immer, wenn ich lerne.