Monotonie und Krümmung
Das Verhalten von Funktionen erkennst du sofort an ihren Ableitungen. Eine Funktion ist streng monoton wachsend, wenn f'(x) > 0 für alle x im Intervall gilt – die Funktion steigt also kontinuierlich an.
Umgekehrt ist sie streng monoton fallend, wenn f'(x) < 0 ist. Der Monotoniesatz gibt dir damit ein super praktisches Werkzeug: Schaue einfach auf das Vorzeichen der ersten Ableitung!
Die Krümmung erkennst du an der zweiten Ableitung f''(x). Ist f''(x) > 0, dann ist der Graph linksgekrümmt (wie ein Lächeln). Bei f''(x) < 0 ist er rechtsgekrümmt (wie ein trauriges Gesicht).
Diese Zusammenhänge helfen dir dabei, Funktionen auch ohne Taschenrechner zu verstehen. Du siehst sofort, wo eine Funktion steigt, fällt oder ihre Krümmung ändert.
Visualisierungshilfe: Stelle dir vor, du fährst mit dem Auto auf dem Funktionsgraph – die erste Ableitung zeigt, ob es bergauf oder bergab geht, die zweite, ob du nach links oder rechts lenkst!