Abstände und Winkel berechnen - Grundlagen der analytischen Geometrie
S
Sophia Faisst
@sophiafaisst_bw
In der analytischen Geometrie geht es um Abstände, Winkel und... Mehr anzeigen
1 / 5
Abstände in der Raumgeometrie
Der Abstand zwischen einem Punkt und einer Ebene kann auf zwei Wegen berechnet werden. Bei der ersten Methode erstellst du eine Lotgerade durch den Punkt, bestimmst den Lotfußpunkt und berechnest den Abstand zwischen diesen Punkten.
Die zweite, elegantere Methode verwendet die Hessesche Normalenform (HNF). Ist die Ebene in HNF gegeben, musst du nur die Koordinaten des Punktes einsetzen: d(R;E) = |(r−p)⋅n0|. Die HNF einer Ebene lautet: (x−p)⋅n0=0 mit normiertem Normalenvektor n0.
Für den Abstand zwischen Punkt und Gerade kannst du entweder die "Hilfsebenen-Methode" anwenden, indem du eine Ebene durch den Punkt erstellst, die senkrecht zur Gerade steht, oder die "Skalarprodukt-Methode". Bei letzterer suchst du einen Punkt F auf der Gerade, sodass der Vektor rF senkrecht zur Gerade steht.
💡 Bei Abstandsberechnungen ist die HNF besonders praktisch, da sie direkt den kürzesten Abstand liefert, ohne einen Schnittpunkt berechnen zu müssen.
Abstände und Winkel im Raum
Der Abstand zwischen windschiefen Geraden (die sich nicht schneiden) lässt sich durch eine Hilfsebene bestimmen. Liegt Gerade g in einer Ebene E und ist Gerade h parallel zu dieser, kannst du den Abstand mit der HNF berechnen: d(g||h) = |(q−p)⋅n|, wobei n=u×v der Normalenvektor ist.
Für den Winkel zwischen zwei Vektorena und b gilt die Formel: cos φ = ∣a∣⋅∣b∣a⋅b. Daraus lässt sich der Winkel φ = cos−1(∣a∣⋅∣b∣a⋅b) berechnen.
Der Schnittwinkel zwischen zwei Geraden mit den Richtungsvektoren u und v wird als der spitze Winkel (0° ≤ φ ≤ 90°) definiert, der mit derselben Formel wie bei Vektoren berechnet wird.
💡 Bei windschiefen Geraden musst du zuerst sicherstellen, dass es sich tatsächlich um windschiefe Geraden handelt (keine gemeinsamen Punkte), bevor du den Abstand berechnest.
Schnittwinkel und Vektorprodukt
Der Schnittwinkel zwischen zwei Ebenen mit Normalenvektoren nE und nF ist der spitze Winkel φ, für den gilt: cos φ = ∣nE∣⋅∣nF∣∣nE⋅nF∣.
Bei einer Gerade und einer Ebene wird der Schnittwinkel über sin φ = ∣n∣⋅∣v∣∣n⋅v∣ berechnet, wobei n der Normalenvektor der Ebene und v der Richtungsvektor der Gerade ist.
Das Vektorprodukt hat praktische Anwendungen: Der Flächeninhalt eines Parallelogramms, das von Vektoren a und b aufgespannt wird, beträgt A = |a×b|. Das Volumen eines Spats, aufgespannt von drei Vektoren, berechnet sich mit V = |c⋅(a×b)|.
Bei einer Punktspiegelung an einem Zentrum Z liegen der Ausgangspunkt P, der Bildpunkt P' und Z auf einer Geraden, wobei gilt: OP′=OZ+ZP′.
💡 Der Betrag des Vektorprodukts |a×b| gibt nicht nur den Flächeninhalt an, sondern auch, wie "unabhängig" zwei Vektoren sind. Je größer der Wert, desto mehr stehen sie senkrecht zueinander.
Spiegelungen und Bewegungen
Bei einer Spiegelung an einer Geraden oder Ebene liegen der Punkt P, der Bildpunkt P' und der Lotfußpunkt F LotvonPaufdieGerade/Ebene auf einer Geraden. Für den Bildpunkt gilt: OP′=OF+FP.
Geradlinige Bewegungen lassen sich durch eine Zeit-Ort-Gleichung beschreiben: x=OP+tPQ. Dabei ist P die Position zum Zeitpunkt t=0 und Q die Position nach einer Zeiteinheit. Die Geschwindigkeit ergibt sich aus v = |PQ|.
Bei bekannten Positionen zu zwei verschiedenen Zeitpunkten kannst du die Zeit-Ort-Gleichung aufstellen, indem du den Anfangspunkt und den Richtungsvektor bestimmst. Ist die Flugbahn und Geschwindigkeit gegeben, musst du den Richtungsvektor normieren und mit der Geschwindigkeit multiplizieren.
Um eine Kollision von zwei Flugobjekten zu überprüfen, stellst du ein lineares Gleichungssystem auf. Eine Lösung bedeutet, dass eine Kollision stattfindet.
💡 Bei Bewegungsaufgaben ist es wichtig, die Einheiten z.B.km/h,m/s im Blick zu behalten und gegebenenfalls umzurechnen, damit die Zeit-Ort-Gleichung konsistente Ergebnisse liefert.
Vektorieller Beweis in der Geometrie
Für einen vektoriellen Beweis geometrischer Sachverhalte gehst du systematisch vor:
Führe Vektoren ein, die die zu untersuchende Figur aufspannen oder beschreiben
Formuliere die Voraussetzungen mithilfe dieser Vektoren in Form von Gleichungen
Formuliere die zu beweisende Behauptung ebenfalls als Vektorgleichung
Beweise die Behauptung durch Umformen der Vektorgleichungen unter Verwendung der Voraussetzungen
Vektorielle Beweise sind besonders elegant, weil sie komplexe geometrische Zusammenhänge auf algebraische Operationen zurückführen.
💡 Die Stärke des vektoriellen Beweisens liegt darin, dass du geometrische Probleme ohne Koordinaten rein algebraisch lösen kannst. Dies funktioniert oft einfacher als mit klassischen geometrischen Methoden.
Wir dachten schon, du fragst nie...
Was ist der Knowunity KI-Begleiter?
Unser KI-Begleiter ist ein speziell für Schüler entwickeltes KI-Tool, das mehr als nur Antworten bietet. Basierend auf Millionen von Knowunity-Inhalten liefert er relevante Informationen, personalisierte Lernpläne, Quizze und Inhalte direkt im Chat und passt sich deinem individuellen Lernweg an.
Wo kann ich die Knowunity-App herunterladen?
Du kannst die App im Google Play Store und im Apple App Store herunterladen.
Ist Knowunity wirklich kostenlos?
Genau! Genieße kostenlosen Zugang zu Lerninhalten, vernetze dich mit anderen Schülern und hol dir sofortige Hilfe – alles direkt auf deinem Handy.
Findest du nicht, was du suchst? Entdecke andere Fächer.
Schüler lieben uns — und du auch.
4.9/5
App Store
4.8/5
Google Play
Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.
Stefan S
iOS-Nutzer
Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.
Samantha Klich
Android-Nutzerin
Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.
Anna
iOS-Nutzerin
Beste App der Welt! Keine Worte, weil sie einfach zu gut ist
Thomas R
iOS-Nutzer
Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.
Basil
Android-Nutzer
Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.
David K
iOS-Nutzer
Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!
Sudenaz Ocak
Android-Nutzerin
In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android-Nutzerin
sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.
Rohan U
Android-Nutzer
Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.
Xander S
iOS-Nutzer
DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮
Elisha
iOS-Nutzer
Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt
Paul T
iOS-Nutzer
Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.
Stefan S
iOS-Nutzer
Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.
Samantha Klich
Android-Nutzerin
Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.
Anna
iOS-Nutzerin
Beste App der Welt! Keine Worte, weil sie einfach zu gut ist
Thomas R
iOS-Nutzer
Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.
Basil
Android-Nutzer
Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.
David K
iOS-Nutzer
Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!
Sudenaz Ocak
Android-Nutzerin
In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android-Nutzerin
sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.
Rohan U
Android-Nutzer
Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.
Xander S
iOS-Nutzer
DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮
Elisha
iOS-Nutzer
Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt
Abstände und Winkel berechnen - Grundlagen der analytischen Geometrie
S
Sophia Faisst
@sophiafaisst_bw
In der analytischen Geometrie geht es um Abstände, Winkel und räumliche Beziehungen, die mit Vektoren berechnet werden können. Diese Zusammenfassung erklärt die wichtigsten Verfahren zur Berechnung von Abständen zwischen geometrischen Objekten sowie Winkeln und geometrischen Anwendungen.
Der Abstand zwischen einem Punkt und einer Ebene kann auf zwei Wegen berechnet werden. Bei der ersten Methode erstellst du eine Lotgerade durch den Punkt, bestimmst den Lotfußpunkt und berechnest den Abstand zwischen diesen Punkten.
Die zweite, elegantere Methode verwendet die Hessesche Normalenform (HNF). Ist die Ebene in HNF gegeben, musst du nur die Koordinaten des Punktes einsetzen: d(R;E) = |(r−p)⋅n0|. Die HNF einer Ebene lautet: (x−p)⋅n0=0 mit normiertem Normalenvektor n0.
Für den Abstand zwischen Punkt und Gerade kannst du entweder die "Hilfsebenen-Methode" anwenden, indem du eine Ebene durch den Punkt erstellst, die senkrecht zur Gerade steht, oder die "Skalarprodukt-Methode". Bei letzterer suchst du einen Punkt F auf der Gerade, sodass der Vektor rF senkrecht zur Gerade steht.
💡 Bei Abstandsberechnungen ist die HNF besonders praktisch, da sie direkt den kürzesten Abstand liefert, ohne einen Schnittpunkt berechnen zu müssen.
Der Abstand zwischen windschiefen Geraden (die sich nicht schneiden) lässt sich durch eine Hilfsebene bestimmen. Liegt Gerade g in einer Ebene E und ist Gerade h parallel zu dieser, kannst du den Abstand mit der HNF berechnen: d(g||h) = |(q−p)⋅n|, wobei n=u×v der Normalenvektor ist.
Für den Winkel zwischen zwei Vektorena und b gilt die Formel: cos φ = ∣a∣⋅∣b∣a⋅b. Daraus lässt sich der Winkel φ = cos−1(∣a∣⋅∣b∣a⋅b) berechnen.
Der Schnittwinkel zwischen zwei Geraden mit den Richtungsvektoren u und v wird als der spitze Winkel (0° ≤ φ ≤ 90°) definiert, der mit derselben Formel wie bei Vektoren berechnet wird.
💡 Bei windschiefen Geraden musst du zuerst sicherstellen, dass es sich tatsächlich um windschiefe Geraden handelt (keine gemeinsamen Punkte), bevor du den Abstand berechnest.
Der Schnittwinkel zwischen zwei Ebenen mit Normalenvektoren nE und nF ist der spitze Winkel φ, für den gilt: cos φ = ∣nE∣⋅∣nF∣∣nE⋅nF∣.
Bei einer Gerade und einer Ebene wird der Schnittwinkel über sin φ = ∣n∣⋅∣v∣∣n⋅v∣ berechnet, wobei n der Normalenvektor der Ebene und v der Richtungsvektor der Gerade ist.
Das Vektorprodukt hat praktische Anwendungen: Der Flächeninhalt eines Parallelogramms, das von Vektoren a und b aufgespannt wird, beträgt A = |a×b|. Das Volumen eines Spats, aufgespannt von drei Vektoren, berechnet sich mit V = |c⋅(a×b)|.
Bei einer Punktspiegelung an einem Zentrum Z liegen der Ausgangspunkt P, der Bildpunkt P' und Z auf einer Geraden, wobei gilt: OP′=OZ+ZP′.
💡 Der Betrag des Vektorprodukts |a×b| gibt nicht nur den Flächeninhalt an, sondern auch, wie "unabhängig" zwei Vektoren sind. Je größer der Wert, desto mehr stehen sie senkrecht zueinander.
Bei einer Spiegelung an einer Geraden oder Ebene liegen der Punkt P, der Bildpunkt P' und der Lotfußpunkt F LotvonPaufdieGerade/Ebene auf einer Geraden. Für den Bildpunkt gilt: OP′=OF+FP.
Geradlinige Bewegungen lassen sich durch eine Zeit-Ort-Gleichung beschreiben: x=OP+tPQ. Dabei ist P die Position zum Zeitpunkt t=0 und Q die Position nach einer Zeiteinheit. Die Geschwindigkeit ergibt sich aus v = |PQ|.
Bei bekannten Positionen zu zwei verschiedenen Zeitpunkten kannst du die Zeit-Ort-Gleichung aufstellen, indem du den Anfangspunkt und den Richtungsvektor bestimmst. Ist die Flugbahn und Geschwindigkeit gegeben, musst du den Richtungsvektor normieren und mit der Geschwindigkeit multiplizieren.
Um eine Kollision von zwei Flugobjekten zu überprüfen, stellst du ein lineares Gleichungssystem auf. Eine Lösung bedeutet, dass eine Kollision stattfindet.
💡 Bei Bewegungsaufgaben ist es wichtig, die Einheiten z.B.km/h,m/s im Blick zu behalten und gegebenenfalls umzurechnen, damit die Zeit-Ort-Gleichung konsistente Ergebnisse liefert.
Für einen vektoriellen Beweis geometrischer Sachverhalte gehst du systematisch vor:
Führe Vektoren ein, die die zu untersuchende Figur aufspannen oder beschreiben
Formuliere die Voraussetzungen mithilfe dieser Vektoren in Form von Gleichungen
Formuliere die zu beweisende Behauptung ebenfalls als Vektorgleichung
Beweise die Behauptung durch Umformen der Vektorgleichungen unter Verwendung der Voraussetzungen
Vektorielle Beweise sind besonders elegant, weil sie komplexe geometrische Zusammenhänge auf algebraische Operationen zurückführen.
💡 Die Stärke des vektoriellen Beweisens liegt darin, dass du geometrische Probleme ohne Koordinaten rein algebraisch lösen kannst. Dies funktioniert oft einfacher als mit klassischen geometrischen Methoden.
Wir dachten schon, du fragst nie...
Was ist der Knowunity KI-Begleiter?
Unser KI-Begleiter ist ein speziell für Schüler entwickeltes KI-Tool, das mehr als nur Antworten bietet. Basierend auf Millionen von Knowunity-Inhalten liefert er relevante Informationen, personalisierte Lernpläne, Quizze und Inhalte direkt im Chat und passt sich deinem individuellen Lernweg an.
Wo kann ich die Knowunity-App herunterladen?
Du kannst die App im Google Play Store und im Apple App Store herunterladen.
Ist Knowunity wirklich kostenlos?
Genau! Genieße kostenlosen Zugang zu Lerninhalten, vernetze dich mit anderen Schülern und hol dir sofortige Hilfe – alles direkt auf deinem Handy.
Findest du nicht, was du suchst? Entdecke andere Fächer.
Schüler lieben uns — und du auch.
4.9/5
App Store
4.8/5
Google Play
Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.
Stefan S
iOS-Nutzer
Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.
Samantha Klich
Android-Nutzerin
Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.
Anna
iOS-Nutzerin
Beste App der Welt! Keine Worte, weil sie einfach zu gut ist
Thomas R
iOS-Nutzer
Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.
Basil
Android-Nutzer
Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.
David K
iOS-Nutzer
Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!
Sudenaz Ocak
Android-Nutzerin
In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android-Nutzerin
sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.
Rohan U
Android-Nutzer
Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.
Xander S
iOS-Nutzer
DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮
Elisha
iOS-Nutzer
Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt
Paul T
iOS-Nutzer
Die App ist sehr einfach zu bedienen und gut gestaltet. Ich habe bisher alles gefunden, wonach ich gesucht habe, und konnte viel aus den Präsentationen lernen! Ich werde die App definitiv für ein Schulprojekt nutzen! Und natürlich hilft sie auch sehr als Inspiration.
Stefan S
iOS-Nutzer
Diese App ist wirklich super. Es gibt so viele Lernzettel und Hilfen [...]. Mein Problemfach ist zum Beispiel Französisch und die App hat so viele Möglichkeiten zur Hilfe. Dank dieser App habe ich mich in Französisch verbessert. Ich würde sie jedem empfehlen.
Samantha Klich
Android-Nutzerin
Wow, ich bin wirklich begeistert. Ich habe die App einfach mal ausprobiert, weil ich sie schon oft beworben gesehen habe und war absolut beeindruckt. Diese App ist DIE HILFE, die man für die Schule braucht und vor allem bietet sie so viele Dinge wie Übungen und Lernzettel, die mir persönlich SEHR geholfen haben.
Anna
iOS-Nutzerin
Beste App der Welt! Keine Worte, weil sie einfach zu gut ist
Thomas R
iOS-Nutzer
Einfach genial. Lässt mich 10x besser lernen, diese App ist eine glatte 10/10. Ich empfehle sie jedem. Ich kann Lernzettel anschauen und suchen. Ich kann sie im Fachordner speichern. Ich kann sie jederzeit wiederholen, wenn ich zurückkomme. Wenn du diese App noch nicht ausprobiert hast, verpasst du wirklich was.
Basil
Android-Nutzer
Diese App hat mich so viel selbstbewusster in meiner Klausurvorbereitung gemacht, nicht nur durch die Stärkung meines Selbstvertrauens durch die Features, die es dir ermöglichen, dich mit anderen zu vernetzen und dich weniger allein zu fühlen, sondern auch durch die Art, wie die App selbst darauf ausgerichtet ist, dass du dich besser fühlst. Sie ist einfach zu bedienen, macht Spaß und hilft jedem, der in irgendeiner Weise Schwierigkeiten hat.
David K
iOS-Nutzer
Die App ist einfach super! Ich muss nur das Thema in die Suche eingeben und bekomme sofort eine Antwort. Ich muss nicht mehr 10 YouTube-Videos schauen, um etwas zu verstehen, und spare dadurch richtig viel Zeit. Sehr empfehlenswert!
Sudenaz Ocak
Android-Nutzerin
In der Schule war ich echt schlecht in Mathe, aber dank der App bin ich jetzt besser geworden. Ich bin so dankbar, dass ihr die App gemacht habt.
Greenlight Bonnie
Android-Nutzerin
sehr zuverlässige App, um deine Ideen in Mathe, Englisch und anderen verwandten Themen zu verbessern. bitte nutze diese App, wenn du in bestimmten Bereichen Schwierigkeiten hast, diese App ist dafür der Schlüssel. wünschte, ich hätte früher eine Bewertung geschrieben. und sie ist auch kostenlos, also mach dir darüber keine Sorgen.
Rohan U
Android-Nutzer
Ich weiß, dass viele Apps gefälschte Accounts nutzen, um ihre Bewertungen zu pushen, aber diese App verdient das alles. Ursprünglich hatte ich eine 4 in meinen Englisch-Klausuren und dieses Mal habe ich eine 2 bekommen. Ich wusste erst drei Tage vor der Klausur von dieser App und sie hat mir SEHR geholfen. Bitte vertrau mir wirklich und nutze sie, denn ich bin sicher, dass auch du Fortschritte sehen wirst.
Xander S
iOS-Nutzer
DIE QUIZZE UND KARTEIKARTEN SIND SO NÜTZLICH UND ICH LIEBE Knowunity KI. ES IST AUCH BUCHSTÄBLICH WIE CHATGPT ABER SCHLAUER!! HAT MIR AUCH BEI MEINEN MASCARA-PROBLEMEN GEHOLFEN!! SOWIE BEI MEINEN ECHTEN FÄCHERN! NATÜRLICH 😍😁😲🤑💗✨🎀😮
Elisha
iOS-Nutzer
Diese App ist echt der Hammer. Ich finde Lernen so langweilig, aber diese App macht es so einfach, alles zu organisieren und dann kannst du die kostenlose KI bitten, dich abzufragen, so gut, und du kannst einfach deine eigenen Sachen hochladen. sehr empfehlenswert als jemand, der gerade Probeklausuren schreibt