Lineare Funktionen - Die Grundlagen
Lineare Funktionen haben die allgemeine Form f(x) = mx + n, die du dir unbedingt merken solltest. Hier ist m die Steigung der Geraden und zeigt dir, wie steil die Linie verläuft. n ist der y-Achsenabschnitt - also der Punkt, wo deine Gerade die y-Achse schneidet.
Die Steigung erkennst du an der Richtung: Bei positiver Steigung läuft die Gerade von unten links nach oben rechts, bei negativer Steigung von oben links nach unten rechts. Mit einer Wertetabelle kannst du ganz einfach verschiedene Punkte der Geraden berechnen, indem du x-Werte einsetzt.
Um Schnittpunkte zweier Geraden zu finden, setzt du einfach beide Gleichungen gleich und löst nach x auf. Den y-Wert erhältst du dann durch Einsetzen in eine der beiden Gleichungen.
Nullstellen berechnest du, indem du f(x) = 0 setzt und nach x auflöst. Der Steigungswinkel lässt sich mit tan α = m bestimmen - einfach den Arkustangens der Steigung berechnen.
Tipp: Vergiss nie die Probe! Setze deine Ergebnisse zur Kontrolle in die ursprüngliche Gleichung ein.